-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtrain.py
557 lines (500 loc) · 19.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
from __future__ import print_function
import argparse
from datetime import datetime
import json
import os
import sys
import time
import librosa
import numpy as np
import tensorflow as tf
from tensorflow.python.client import timeline
from samplernn import SampleRnnModel
from samplernn import AudioReader
from samplernn import mu_law_decode
from samplernn import optimizer_factory
DATA_DIRECTORY = './pinao-corpus'
LOGDIR_ROOT = './logdir'
CHECKPOINT_EVERY = 5
GENERATE_EVERY = 10
NUM_STEPS = int(1e5)
LEARNING_RATE = 1e-3
SAMPLE_SIZE = 100000
L2_REGULARIZATION_STRENGTH = 0
SILENCE_THRESHOLD = None
MOMENTUM = 0.9
MAX_TO_KEEP = 5
N_SECS = 3
SAMPLE_RATE = 22050
LENGTH = N_SECS * SAMPLE_RATE
BATCH_SIZE = 1
NUM_GPU = 1
def get_arguments():
parser = argparse.ArgumentParser(description='SampleRnn example network')
parser.add_argument('--num_gpus', type=int, default=NUM_GPU)
parser.add_argument('--batch_size', type=int, default=BATCH_SIZE)
parser.add_argument('--data_dir', type=str,
default=DATA_DIRECTORY)
parser.add_argument('--logdir_root', type=str, default=LOGDIR_ROOT)
parser.add_argument('--checkpoint_every', type=int,
default=CHECKPOINT_EVERY)
parser.add_argument('--num_steps', type=int, default=NUM_STEPS)
parser.add_argument('--learning_rate', type=float,
default=LEARNING_RATE)
parser.add_argument('--sample_size', type=int, default=SAMPLE_SIZE)
parser.add_argument('--sample_rate', type=int, default=SAMPLE_RATE)
parser.add_argument('--l2_regularization_strength',
type=float, default=L2_REGULARIZATION_STRENGTH)
parser.add_argument('--silence_threshold', type=float,
default=SILENCE_THRESHOLD)
parser.add_argument('--optimizer', type=str,
default='adam', choices=optimizer_factory.keys())
parser.add_argument('--momentum', type=float, default=MOMENTUM)
parser.add_argument('--seq_len', type=int, required=True)
parser.add_argument('--big_frame_size', type=int, required=True)
parser.add_argument('--frame_size', type=int, required=True)
parser.add_argument('--q_levels', type=int, required=True)
parser.add_argument('--dim', type=int, required=True)
parser.add_argument('--n_rnn', type=int,
choices=list(range(1, 6)), required=True)
parser.add_argument('--emb_size', type=int, required=True)
parser.add_argument('--rnn_type', choices=['LSTM', 'GRU'], required=True)
parser.add_argument('--max_checkpoints', type=int, default=MAX_TO_KEEP)
return parser.parse_args()
def save(saver, sess, logdir, step):
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
print('Storing checkpoint to {} ...'.format(logdir), end="")
sys.stdout.flush()
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print(' Done.')
def load(saver, sess, logdir):
print("Trying to restore saved checkpoints from {} ...".format(logdir),
end="")
ckpt = tf.train.get_checkpoint_state(logdir)
if ckpt:
print(" Checkpoint found: {}".format(ckpt.model_checkpoint_path))
global_step = int(ckpt.model_checkpoint_path
.split('/')[-1]
.split('-')[-1])
print(" Global step was: {}".format(global_step))
print(" Restoring...", end="")
saver.restore(sess, ckpt.model_checkpoint_path)
print(" Done.")
return global_step
else:
print(" No checkpoint found.")
return None
def create_model(args):
# Create network.
net = SampleRnnModel(
batch_size=args.batch_size,
big_frame_size=args.big_frame_size,
frame_size=args.frame_size,
q_levels=args.q_levels,
rnn_type=args.rnn_type,
dim=args.dim,
n_rnn=args.n_rnn,
seq_len=args.seq_len,
emb_size=args.emb_size)
return net
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
# GENERATE
def create_gen_wav_para(net):
with tf.name_scope('infe_para'):
infe_para = dict()
infe_para['infe_big_frame_inp'] = tf.get_variable(
"infe_big_frame_inp",
[
net.batch_size,
net.big_frame_size,
1
],
dtype=tf.float32
)
infe_para['infe_big_frame_outp'] = tf.get_variable(
"infe_big_frame_outp",
[
net.batch_size,
net.big_frame_size / net.frame_size,
net.dim
],
dtype=tf.float32)
infe_para['infe_big_frame_outp_slices'] = tf.get_variable(
"infe_big_frame_outp_slices",
[
net.batch_size,
1,
net.dim
],
dtype=tf.float32
)
infe_para['infe_frame_inp'] = tf.get_variable(
"infe_frame_inp",
[
net.batch_size,
net.frame_size,
1
],
dtype=tf.float32
)
infe_para['infe_frame_outp'] = tf.get_variable(
"infe_frame_outp",
[
net.batch_size,
net.frame_size,
net.dim
],
dtype=tf.float32
)
infe_para['infe_frame_outp_slices'] = tf.get_variable(
"infe_frame_outp_slices",
[
net.batch_size,
1,
net.dim
],
dtype=tf.float32
)
infe_para['infe_sample_inp'] = tf.get_variable(
"infe_sample_inp",
[
net.batch_size,
net.frame_size,
1
],
dtype=tf.int32
)
infe_para['infe_big_frame_state'] = net.big_cell.zero_state(
net.batch_size,
tf.float32
)
infe_para['infe_frame_state'] = net.cell.zero_state(
net.batch_size,
tf.float32
)
tf.get_variable_scope().reuse_variables()
infe_para['infe_big_frame_outp'], \
infe_para[
'infe_final_big_frame_state'
] = net._create_network_BigFrame(
num_steps=1,
big_frame_state=infe_para['infe_big_frame_state'],
big_input_sequences=infe_para['infe_big_frame_inp']
)
infe_para['infe_frame_outp'], \
infe_para['infe_final_frame_state'] = net._create_network_Frame(
num_steps=1,
big_frame_outputs=infe_para['infe_big_frame_outp_slices'],
frame_state=infe_para['infe_frame_state'],
input_sequences=infe_para['infe_frame_inp']
)
sample_out = net._create_network_Sample(
frame_outputs=infe_para['infe_frame_outp_slices'],
sample_input_sequences=infe_para['infe_sample_inp']
)
sample_out = tf.reshape(
sample_out,
[-1, net.q_levels]
)
infe_para['infe_sample_outp'] = tf.cast(
tf.nn.softmax(
tf.cast(
sample_out,
tf.float64
)
),
tf.float32
)
infe_para['infe_sample_decode_inp'] = tf.placeholder(
tf.int32
)
infe_para['infe_decode'] = mu_law_decode(
infe_para['infe_sample_decode_inp'],
net.q_levels
)
return infe_para
def write_wav(waveform, sample_rate, filename):
y = np.array(waveform)
librosa.output.write_wav(filename, y, sample_rate)
print('Updated wav file at {}'.format(filename))
def generate_and_save_samples(step, net, infe_para, sess):
samples = np.zeros((net.batch_size, LENGTH, 1), dtype='int32')
samples[:, :net.big_frame_size, :] = np.int32(net.q_levels//2)
final_big_s, final_s = sess.run([net.big_initial_state, net.initial_state])
big_frame_out = None
frame_out = None
sample_out = None
for t in range(net.big_frame_size, LENGTH):
# big frame
if t % net.big_frame_size == 0:
big_frame_out = None
big_input_sequences = samples[
:,
t - net.big_frame_size:t,
:
].astype('float32')
big_frame_out, final_big_s = sess.run(
[
infe_para[
'infe_big_frame_outp'
],
infe_para['infe_final_big_frame_state']
],
feed_dict={
infe_para['infe_big_frame_inp']: big_input_sequences,
infe_para['infe_big_frame_state']: final_big_s
}
)
# frame
if t % net.frame_size == 0:
frame_input_sequences = samples[
:,
t - net.frame_size:t,
:
].astype('float32')
big_frame_output_idx = (
t // net.frame_size
) % (
net.big_frame_size // net.frame_size
)
frame_out, final_s = sess.run(
[
infe_para['infe_frame_outp'],
infe_para['infe_final_frame_state']
],
feed_dict={
infe_para['infe_big_frame_outp_slices']: big_frame_out[
:,
[big_frame_output_idx],
:
],
infe_para['infe_frame_inp']: frame_input_sequences,
infe_para['infe_frame_state']: final_s
}
)
# sample
sample_input_sequences = samples[:, t-net.frame_size:t, :]
frame_output_idx = t % net.frame_size
sample_out = sess.run(
infe_para['infe_sample_outp'],
feed_dict={
infe_para['infe_frame_outp_slices']: frame_out[
:,
[frame_output_idx],
:
],
infe_para['infe_sample_inp']: sample_input_sequences
}
)
sample_next_list = []
for row in sample_out:
sample_next = np.random.choice(
np.arange(net.q_levels), p=row)
sample_next_list.append(sample_next)
samples[:, t] = np.array(sample_next_list).reshape([-1, 1])
for i in range(net.batch_size):
inp = samples[i].reshape([-1, 1]).tolist()
out = sess.run(infe_para['infe_decode'],
feed_dict={infe_para['infe_sample_decode_inp']: inp})
write_wav(out, SAMPLE_RATE, './generated/test_' +
str(step)+'_'+str(i)+'.wav')
if i >= 10:
break
def main():
args = get_arguments()
if args.l2_regularization_strength == 0:
args.l2_regularization_strength = None
logdir = os.path.join(args.logdir_root, 'train')
coord = tf.train.Coordinator()
with tf.name_scope('create_inputs'):
reader = AudioReader(args.data_dir,
coord,
sample_rate=args.sample_rate,
sample_size=args.sample_size,
silence_threshold=args.silence_threshold)
audio_batch = reader.dequeue(args.batch_size)
net = create_model(args)
global_step = tf.get_variable(
'global_step',
[],
initializer=tf.constant_initializer(0),
trainable=False
)
optim = optimizer_factory[args.optimizer](
learning_rate=args.learning_rate,
momentum=args.momentum)
######Multi GPU###########
tower_grads = []
losses = []
train_input_batch_rnn = []
train_big_frame_state = []
train_frame_state = []
final_big_frame_state = []
final_frame_state = []
for i in range(args.num_gpus):
train_input_batch_rnn.append(
tf.Variable(
tf.zeros(
[net.batch_size, net.seq_len, 1]
),
trainable=False,
name="input_batch_rnn",
dtype=tf.float32
)
)
train_big_frame_state.append(
net.big_cell.zero_state(net.batch_size, tf.float32))
final_big_frame_state.append(
net.big_cell.zero_state(net.batch_size, tf.float32))
train_frame_state.append(
net.cell.zero_state(net.batch_size, tf.float32))
final_frame_state.append(
net.cell.zero_state(net.batch_size, tf.float32))
with tf.variable_scope(tf.get_variable_scope()):
for i in range(args.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('TOWER_%d' % (i)) as scope:
# Create model.
print("Creating model On Gpu:%d." % (i))
(
loss,
final_big_frame_state[i],
final_frame_state[i]
)=net.loss_SampleRnn(
train_input_batch_rnn[i],
train_big_frame_state[i],
train_frame_state[i],
l2_regularization_strength=args.l2_regularization_strength # noqa: E501
)
tf.get_variable_scope().reuse_variables()
losses.append(loss)
# Reuse variables for the next tower.
trainable = tf.trainable_variables()
gradients = optim.compute_gradients(
loss,
trainable,
aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N # noqa: E501
)
tower_grads.append(gradients)
grad_vars = average_gradients(tower_grads)
grads, vars = list(zip(*grad_vars))
grads_clipped, _ = tf.clip_by_global_norm(grads, 5.0)
grad_vars = list(zip(grads_clipped, vars))
for name in grad_vars:
print(name)
apply_gradient_op = optim.apply_gradients(
grad_vars, global_step=global_step)
#################
infe_para = create_gen_wav_para(net)
writer = tf.summary.FileWriter(logdir)
writer.add_graph(tf.get_default_graph())
#run_metadata = tf.RunMetadata()
summaries = tf.summary.merge_all()
tf_config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False)
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver(var_list=tf.trainable_variables(),
max_to_keep=args.max_checkpoints)
try:
saved_global_step = load(saver, sess, logdir)
if saved_global_step is None:
# The first training step will be saved_global_step + 1,
# therefore we put -1 here for new or overwritten trainings.
saved_global_step = -1
except:
print("Something went wrong while restoring checkpoint. "
"We will terminate training to avoid accidentally overwriting "
"the previous model.")
raise
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
reader.start_threads(sess)
step = None
last_saved_step = saved_global_step
try:
for step in range(saved_global_step + 1, args.num_steps):
if (step-1) % GENERATE_EVERY == 0 and step > GENERATE_EVERY:
generate_and_save_samples(step, net, infe_para, sess)
final_big_s = []
final_s = []
for g in range(args.num_gpus):
final_big_s.append(sess.run(net.big_initial_state))
final_s.append(sess.run(net.initial_state))
start_time = time.time()
inputslist = [sess.run(audio_batch) for i in range(args.num_gpus)]
loss_sum = 0
idx_begin = 0
audio_length = args.sample_size - args.big_frame_size
bptt_length = args.seq_len - args.big_frame_size
stateful_rnn_length = audio_length // bptt_length
outp_list = [summaries,
losses,
apply_gradient_op,
final_big_frame_state,
final_frame_state]
for i in range(0, stateful_rnn_length):
inp_dict = {}
for g in range(args.num_gpus):
inp_dict[train_input_batch_rnn[g]] = \
inputslist[g][:, idx_begin: idx_begin+args.seq_len, :]
inp_dict[train_big_frame_state[g]] = final_big_s[g]
inp_dict[train_frame_state[g]] = final_s[g]
idx_begin += args.seq_len-args.big_frame_size
summary, loss_gpus, _, final_big_s, final_s = \
sess.run(outp_list, feed_dict=inp_dict)
writer.add_summary(summary, step)
for g in range(args.num_gpus):
loss_gpu = loss_gpus[g]/stateful_rnn_length
loss_sum += loss_gpu/args.num_gpus
duration = time.time() - start_time
print('step {:d} - loss = {:.3f}, ({:.3f} sec/step)'
.format(step, loss_sum, duration))
if step % args.checkpoint_every == 0:
save(saver, sess, logdir, step)
last_saved_step = step
except KeyboardInterrupt:
# Introduce a line break after ^C is displayed so save message
# is on its own line.
print()
finally:
if step > last_saved_step:
save(saver, sess, logdir, step)
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()