forked from haochenglouis/cores
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathloss.py
executable file
·65 lines (52 loc) · 1.9 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import random
import math
# Loss functions
def loss_cross_entropy(epoch, y, t,class_list, ind, noise_or_not,loss_all,loss_div_all):
##Record loss and loss_div for further analysis
loss = F.cross_entropy(y, t, reduce = False)
loss_numpy = loss.data.cpu().numpy()
num_batch = len(loss_numpy)
loss_all[ind,epoch] = loss_numpy
return torch.sum(loss)/num_batch
def loss_cores(epoch, y, t,class_list, ind, noise_or_not,loss_all,loss_div_all, noise_prior = None):
beta = f_beta(epoch)
# if epoch == 1:
# print(f'current beta is {beta}')
loss = F.cross_entropy(y, t, reduce = False)
loss_numpy = loss.data.cpu().numpy()
num_batch = len(loss_numpy)
loss_v = np.zeros(num_batch)
loss_div_numpy = float(np.array(0))
loss_ = -torch.log(F.softmax(y) + 1e-8)
# sel metric
loss_sel = loss - torch.mean(loss_,1)
if noise_prior is None:
loss = loss - beta*torch.mean(loss_,1)
else:
loss = loss - beta*torch.sum(torch.mul(noise_prior, loss_),1)
loss_div_numpy = loss_sel.data.cpu().numpy()
loss_all[ind,epoch] = loss_numpy
loss_div_all[ind,epoch] = loss_div_numpy
for i in range(len(loss_numpy)):
if epoch <=30:
loss_v[i] = 1.0
elif loss_div_numpy[i] <= 0:
loss_v[i] = 1.0
loss_v = loss_v.astype(np.float32)
loss_v_var = Variable(torch.from_numpy(loss_v)).cuda()
loss_ = loss_v_var * loss
if sum(loss_v) == 0.0:
return torch.mean(loss_)/100000000
else:
return torch.sum(loss_)/sum(loss_v), loss_v.astype(int)
def f_beta(epoch):
beta1 = np.linspace(0.0, 0.0, num=10)
beta2 = np.linspace(0.0, 2, num=30)
beta3 = np.linspace(2, 2, num=60)
beta = np.concatenate((beta1,beta2,beta3),axis=0)
return beta[epoch]