-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensembles.py
188 lines (150 loc) · 6.28 KB
/
ensembles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
from sklearn.tree import DecisionTreeRegressor
from scipy.optimize import minimize_scalar
from sklearn.dummy import DummyRegressor
from sklearn.metrics import mean_squared_error
class RandomForestMSE:
def __init__(self, n_estimators=30, max_depth=None, feature_subsample_size=None,
bootstrap_size=None, **trees_parameters):
"""
n_estimators : int
The number of trees in the forest.
max_depth : int
The maximum depth of the tree. If None then there is no limits.
feature_subsample_size : float
The size of feature set for each tree. If None then use recommendations.
"""
self.n_estimators = n_estimators
self.max_depth = max_depth
self.feature_size = feature_subsample_size
self.bootstrap_size = bootstrap_size
self.kwargs = trees_parameters
self.score = []
self.ensemble = []
self.feature_indexs = None
self.obj_indexs = None
def recommend_bootstrap_size(self, size):
return size
def recommend_feature_size(self, size):
return size//3
def prepocessing_params(self, X):
if self.bootstrap_size is None:
self.bootstrap_size = self.recommend_bootstrap_size(X.shape[0])
else:
self.bootstrap_size = int(self.bootstrap_size*X.shape[0])
if self.feature_size is None:
self.feature_size = self.recommend_feature_size(X.shape[1])
else:
self.feature_size = int(self.feature_size*X.shape[1])
self.obj_indexs = [np.random.choice(X.shape[0], self.bootstrap_size, replace=True)
for i in range(self.n_estimators)]
self.feature_indexs = [np.random.choice(X.shape[1], self.feature_size, replace=False)
for i in range(self.n_estimators)]
def write_score(self, X_val, y_val, scorer):
# В идеале надо добавлять exсeption, но лень...
if X_val is not None and y_val is not None and scorer is not None:
self.score.append(scorer(self.predict(X_val), y_val))
def fit(self, X, y, X_val=None, y_val=None, scorer=None):
"""
X : numpy ndarray
Array of size n_objects, n_features
y : numpy ndarray
Array of size n_objects
X_val : numpy ndarray
Array of size n_val_objects, n_features
y_val : numpy ndarray
Array of size n_val_objects
"""
self.prepocessing_params(X)
for i in range(self.n_estimators):
f_ind = self.feature_indexs[i]
obj_ind = self.obj_indexs[i]
model = DecisionTreeRegressor(max_depth=self.max_depth, **self.kwargs)
model.fit(X[obj_ind][:, f_ind], y[obj_ind])
self.ensemble.append(model)
self.write_score(X_val, y_val, scorer)
def predict(self, X):
"""
X : numpy ndarray
Array of size n_objects, n_features
Returns
-------
y : numpy ndarray
Array of size n_objects
"""
y_pred = np.zeros(X.shape[0])
for f, m in zip(self.feature_indexs, self.ensemble):
y_pred += m.predict(X[:, f])
return y_pred/len(self.ensemble)
class GradientBoostingMSE:
def __init__(self, n_estimators, learning_rate=0.1, max_depth=3, feature_subsample_size=None,
**trees_parameters):
"""
n_estimators : int
The number of trees in the forest.
learning_rate : float
Use learning_rate * gamma instead of gamma
max_depth : int
The maximum depth of the tree. If None then there is no limits.
feature_subsample_size : float
The size of feature set for each tree. If None then use recommendations.
"""
self.n_estimators = n_estimators
self.max_depth = max_depth
self.learning_rate = learning_rate
self.feature_size = feature_subsample_size
self.kwargs = trees_parameters
self.score = []
self.ensemble = []
self.lambdas = []
self.feature_indexs = None
def recommend_feature_size(self, size):
return size//3
def prepocessing_params(self, X):
if self.feature_size is None:
self.feature_size = self.recommend_feature_size(X.shape[1])
else:
self.feature_size = int(self.feature_size*X.shape[1])
self.feature_indexs = [np.random.choice(X.shape[1], self.feature_size, replace=False)
for i in range(self.n_estimators)]
def write_score(self, X_val, y_val, scorer):
# В идеале надо добавлять exсeption, но лень...
if X_val is not None and y_val is not None and scorer is not None:
self.score.append(scorer(self.predict(X_val), y_val))
def fit(self, X, y, X_val=None, y_val=None, scorer=None):
"""
X : numpy ndarray
Array of size n_objects, n_features
y : numpy ndarray
Array of size n_objects
"""
self.prepocessing_params(X)
model = DummyRegressor(strategy="mean")
model.fit(X, y)
self.lambdas.append(1)
self.ensemble.append(model)
self.write_score(X_val, y_val, scorer)
for i in range(1,self.n_estimators):
f_ind = self.feature_indexs[i]
y_pred_base = self.predict(X)
grad = 2*(y_pred_base-y)
model = DecisionTreeRegressor(max_depth=self.max_depth, **self.kwargs)
model.fit(X[:, f_ind], -grad)
y_pred_new = model.predict(X[:, f_ind])
l = minimize_scalar(lambda l: mean_squared_error(y, y_pred_base+l*y_pred_new))
self.lambdas.append(self.learning_rate*l.x)
self.ensemble.append(model)
self.write_score(X_val, y_val, scorer)
def predict(self, X):
"""
X : numpy ndarray
Array of size n_objects, n_features
Returns
-------
y : numpy ndarray
Array of size n_objects
"""
y_pred = np.zeros(X.shape[0])
for l, f_ind, m in zip(self.lambdas, self.feature_indexs, self.ensemble):
y_pred += l*m.predict(X[:, f_ind])
return y_pred