-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_res_bin.py
245 lines (201 loc) · 8.84 KB
/
train_res_bin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import argparse
import os
import shutil
import sys
import gc
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import torch.optim
import torch.utils
import torch.utils.data.distributed
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from dataset import yoloDataset
from yoloLoss import yoloLoss
import model_list
from net import vgg16_bn
from resnet_bin import resnet18
from mixnet import vgg16_mix3
import util
def save_checkpoint(state, is_best, filename='./experiment/vgg16xnor/checkpoint.pth.tar'):
if args.mixnet:
filename = './experiment/vgg16mix/checkpoint.pth.tar'
torch.save(state, filename)
if is_best:
if args.mixnet:
shutil.copyfile(filename, './experiment/vgg16mix/model_best.pth.tar')
else:
shutil.copyfile(filename, './experiment/vgg16xnor/model_best.pth.tar')
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if epoch <5:
lr = 1e-5
if epoch >=5 and epoch < 80:
lr = 1e-4
if epoch >= 80 and epoch < 110:
lr = 1e-5
if epoch >=110:
lr = 1e-6
print 'Learning rate:', lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(train_loader, model, criterion, optimizer, epoch):
total_loss = 0.
model.train()
for i, (input, target) in enumerate(train_loader):
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
input_var,target_var = input_var.cuda(),target_var.cuda()
if not args.pretrained:
'''Weight Binarization.'''
bin_op.binarization()
'''Forward propagation and compute yolo loss.'''
output = model(input_var)
loss = criterion(output, target_var)
total_loss += loss.data.item()
'''Computer gradient.'''
optimizer.zero_grad()
loss.backward()
'''Restore binarized weight to full precision and update.'''
if not args.pretrained:
bin_op.restore()
bin_op.updateBinaryGradWeight()
optimizer.step()
'''#Print losses etc.'''
if (i+1) % 5 == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f, average_loss: %.4f'
%(epoch+1, args.epochs, i+1, len(train_loader), loss.data.item(), total_loss / (i+1)))
with open("./log/log.txt", "a") as text_file:
text_file.write('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f, average_loss: %.4f \n'
%(epoch+1, args.epochs, i+1, len(train_loader), loss.data.item(), total_loss / (i+1)))
gc.collect()
def validate(test_loader, model, criterion):
validate_loss = 0.0
'''Weight Binarization.'''
model.eval()
if not args.pretrained:
bin_op.binarization()
for i, (input, target) in enumerate(test_loader):
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
input_var,target_var = input_var.cuda(),target_var.cuda()
output = model(input_var)
loss = criterion(output,target_var)
validate_loss += loss.data.item()
validate_loss /= len(test_loader)
print('validation loss %.5f' % validate_loss)
with open("./log/log.txt", "a") as text_file:
text_file.write('validation loss %.5f \n' % validate_loss)
if not args.pretrained:
bin_op.restore()
return validate_loss
def main():
'''Parse argument.'''
parser = argparse.ArgumentParser(description = 'Pytorch XNOR-YOLO Training')
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--l', '--wd', default=1e-5, type=float,
metavar='W', help='weight decay (default: 1e-5)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
default=False, help='use pre-trained model')
parser.add_argument('--mixnet', dest='mixnet', action='store_true',
default=False, help='use mixnet model')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-b', '--batch-size', default=8, type=int,
metavar='N', help='mini-batch size (default: 256)')
global args
args = parser.parse_args()
'''Data loading module'''
train_dataset = yoloDataset(root='/mnt/lustre/share/DSK/datasets/VOC07+12/JPEGImages/',
list_file=['./meta/voc2007.txt'], train=True, transform=[transforms.ToTensor()])
train_loader = DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
test_dataset = yoloDataset(root ='/mnt/lustre/share/DSK/datasets/VOC07+12/JPEGImages/',
list_file='./meta/voc2007test.txt',train=False, transform=[transforms.ToTensor()])
test_loader = DataLoader(
test_dataset,batch_size=args.batch_size, shuffle=False, num_workers=4)
'''Create model.'''
if args.pretrained:
print 'Loading a pretrained vgg16_bn model...'
model = vgg16_bn(pretrained = False)
pretrained_dict = torch.load('vgg16_bn-6c64b313.pth')
model_dict = model.state_dict()
pretrained_dict = pretrained_dict = {k: v for k, v in pretrained_dict.items() if
(k in model_dict) and (model_dict[k].shape == pretrained_dict[k].shape)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
elif args.mixnet:
print 'Loading a xnor&fp mixed model...'
model,bin_range = vgg16_mix3(pretrained = False)
else:
print 'Loading a binary vgg16_bn model...'
model = resnet18(pretrained = False)
model = torch.nn.DataParallel(model)
model.cuda()
'''Define loss functin i.e. YoloLoss and optimizer i.e. ADAM'''
criterion = yoloLoss(7,2,5,0.5)
optimizer = torch.optim.Adam(model.parameters(), args.lr,
weight_decay = args.l)
'''weight initialization'''
if not args.pretrained:
for m in model.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
c = float(m.weight.data[0].nelement())
m.weight.data = m.weight.data.normal_(0, 2.0/c)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data = m.weight.data.zero_().add(1.0)
m.bias.data = m.bias.data.zero_()
best_loss = 100
if not args.pretrained:
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
del checkpoint
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
if args.resume:
if args.mixnet:
model.load_state_dict(torch.load('./experiment/vgg16mix/checkpoint.pth'))
else:
model.load_state_dict(torch.load('./experiment/vgg16fp/checkpoint.pth'))
print model
'''Define binarization operator.'''
global bin_op
bin_range = [1,1999999999]
bin_op = util.BinOp(model,bin_range)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
'''Train& validate for one epoch.'''
train(train_loader, model, criterion, optimizer, epoch)
val_loss = validate(test_loader, model, criterion)
is_best = val_loss < best_loss
best_loss = min(val_loss,best_loss)
if not args.pretrained:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_loss': best_loss,
'optimizer' : optimizer.state_dict(),
}, is_best)
else:
torch.save(model.state_dict(),'./experiment/vgg16fp/checkpoint.pth')
if __name__ == '__main__':
main()