-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathanalyze.m
executable file
·204 lines (177 loc) · 6.5 KB
/
analyze.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
function analyze(dataset, sigma, nAlgos)
%% analyze and visualize results of compareAlgorithms
% By TomHeaven, hanlin_tan@nudt.edu.cn, 2016.12.27
%close all;
%% settings
fontSize = 20; % figure font size
enableExportResultImages = true;
% combine results with previous results stored in 'compareResults_nonAtomic.mat'
enableUpdateResultMat = false;
% analyze this number of algorithms
% nAlgos = 3;
if enableUpdateResultMat
load('compareResults_old.mat');
results0 = results;
end
savepath = sprintf('res/%s/compareResults_%s_sigma%d.mat', dataset, dataset, sigma);
load(savepath);
% sort results according to filenames
results = sortResultsFileNames(results);
len = length(results);
if ~exist('nAlgos', 'var')
nAlgos = 5;
end
if enableUpdateResultMat
%len = 2; % debug
for i = 1 : len
if ~isfield(results{i}, 'dadmm') && isfield(results0{i}, 'dadmm') == 1
results{i}.dadmm = results0{i}.dadmm;
end
if ~isfield(results{i}, 'admm') && isfield(results0{i}, 'admm') == 1
results{i}.admm = results0{i}.admm;
end
if ~isfield(results{i}, 'flexisp') && isfield(results0{i}, 'flexisp') == 1
results{i}.flexisp = results0{i}.flexisp;
end
if ~isfield(results{i}, 'dj') && isfield(results0{i}, 'dj') == 1
results{i}.dj = results0{i}.dj;
end
if ~isfield(results{i}, 'fcn') && isfield(results0{i}, 'fcn') == 1
results{i}.fcn = results0{i}.fcn;
end
if ~isfield(results{i}, 'fcne') && isfield(results0{i}, 'fcne') == 1
results{i}.fcne = results0{i}.fcne;
end
results{i}.groundtruth = results0{i}.groundtruth;
results{i}.bayer_noisy = results0{i}.bayer_noisy;
results{i}.conf = results0{i}.conf;
end
save(savepath, 'results');
end
psnr = zeros(len, nAlgos);
time = zeros(len, nAlgos);
if results{1}.conf.debug
len = 1;
end
for i = 1 : len
if isfield(results{i}, 'admm') == 1
psnr(i, 1) = results{i}.admm.psnr;
time(i, 1) = results{i}.admm.time;
end
if isfield(results{i}, 'flexisp') == 1
psnr(i, 2) = results{i}.flexisp.psnr;
time(i, 2) = results{i}.flexisp.time;
end
if isfield(results{i}, 'dj') == 1
psnr(i, 3) = results{i}.dj.psnr;
time(i, 3) = results{i}.dj.time;
end
if nAlgos > 3
if isfield(results{i}, 'fcn') == 1
psnr(i, 4) = results{i}.fcn.psnr;
time(i, 4) = results{i}.fcn.time;
end
if isfield(results{i}, 'fcne') == 1
psnr(i, 5) = results{i}.fcne.psnr;
time(i, 5) = results{i}.fcne.time;
end
if isfield(results{i}, 'dadmm') == 1
psnr(i, 6) = results{i}.dadmm.psnr;
time(i, 6) = results{i}.dadmm.time;
end
end
end
ave_pnsr = sum(psnr, 1) / len;
fprintf('avg psnr for admm = %f\n',ave_pnsr(1) );
fprintf('avg psnr for flexisp = %f\n', ave_pnsr(2));
fprintf('avg psnr for dj = %f\n', ave_pnsr(3));
if nAlgos > 3
if isfield(results{i}, 'fcne') == 1
fprintf('avg psnr for fcn = %f\n', ave_pnsr(4));
end
if isfield(results{i}, 'fcne') == 1
fprintf('avg psnr for fcn_ensemble = %f\n', ave_pnsr(5));
end
fprintf('avg psnr for deep_admm = %f\n', ave_pnsr(6));
end
h1 = figure;
bar(psnr);
if nAlgos == 5
legend('ADMM', 'FlexISP', 'DeepJoint', 'FCN', 'FCN-Ensemble', 'DeepADMM', 'Location', 'southeast');
else
legend('ADMM', 'FlexISP', 'DeepJoint', 'Location', 'southeast');
end
title('PSNR comparison');
xlabel('Image No.');
ylabel('dB');
set(gca, 'FontSize', fontSize);
saveas(h1, sprintf('res/%s/psnr_comparison_%s_sigma%d_algos_%d.jpg', dataset, dataset, sigma, nAlgos));
h2 = figure;
bar(time);
if nAlgos == 5
legend('ADMM', 'FlexISP', 'DeepJoint', 'FCN', 'FCN-Ensemble', 'DeepADMM', 'Location', 'east');
else
legend('ADMM', 'FlexISP', 'DeepJoint', 'Location', 'east');
end
title('Running time comparison');
xlabel('Image No.');
ylabel('sec');
set(gca, 'FontSize', fontSize);
saveas(h2, sprintf('res/%s/time_comparison_%s_sigma%d_algos_%d.jpg', dataset, dataset, sigma, nAlgos));
if enableExportResultImages
mkdir(sprintf('res/%s/sigma%d', dataset, sigma));
for i = 1 : len
if isfield(results{i}, 'admm') == 1
imwrite(results{i}.admm.RGB, sprintf('res/%s/sigma%d/im%d_admm.bmp', dataset, sigma, i));
end
if isfield(results{i}, 'flexisp') == 1
imwrite(results{i}.flexisp.RGB, sprintf('res/%s/sigma%d/im%d_flexisp.bmp', dataset, sigma, i));
end
if isfield(results{i}, 'dj') == 1
imwrite(results{i}.dj.RGB, sprintf('res/%s/sigma%d/im%d_deepjoint.bmp', dataset, sigma, i));
end
if isfield(results{i}, 'fcn') == 1
imwrite(results{i}.fcn.RGB, sprintf('res/%s/sigma%d/im%d_fcn.bmp', dataset, sigma, i));
end
if isfield(results{i}, 'fcne') == 1
imwrite(results{i}.fcne.RGB, sprintf('res/%s/sigma%d/im%d_fcne.bmp', dataset, sigma, i));
end
if isfield(results{i}, 'dadmm') == 1
imwrite(results{i}.dadmm.RGB, sprintf('res/%s/sigma%d/im%d_dadmm.bmp', dataset, sigma, i));
end
imwrite(uint8(results{i}.bayer_noisy), sprintf('res/%s/sigma%d/im%d_bayer_noisy.bmp', dataset, sigma, i));
imwrite(results{i}.groundtruth, sprintf('res/%s/sigma%d/im%d_groundtruth.bmp', dataset, sigma, i));
imwrite(results{i}.matlab.RGB, sprintf('res/%s/sigma%d/im%d_matlab.bmp', dataset, sigma, i));
end
end
for i = 1 : len
res = results{i};
sz = size(res.groundtruth);
% name = sscanf(results{i}.noisypath, '../data/%s');
% l = length(name);
% name = name(1:l - 5);
% fprintf('%d & %s & $%d \\times %d $ & %.2f / %.3f & %.2f / %.2f & %.2f / %.2f & %.2f / %.2f & %.2f / %.2f \\\\ \n', ...
% i, name, sz(1), sz(2), res.admm.psnr, res.admm.time, res.flexisp.psnr, res.flexisp.time, ...
% res.dj.psnr, res.dj.time, res.fcn.psnr, res.fcn.time, res.fcne.psnr, res.fcne.time);
end
save('analysis.mat', 'psnr', 'time', 'ave_pnsr');
end
function results = sortResultsFileNames(results)
addpath('utils');
len = length(results);
paths = cell(len, 1);
for i = 1 : len
paths{i} = results{i}.groundtruth_path;
end
paths = natsortfiles(paths);
for i = 1 : len
for j = 1 : len
if strcmp(results{j}.groundtruth_path, paths{i}) == 1 && i~= j
t = results{i};
results{i} = results{j};
results{j} = t;
break;
end
end
end
end