-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathindia_input.jl
217 lines (159 loc) · 7.73 KB
/
india_input.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Tony Shu
# Reading India Data Files
# Mostly Generators are returned
using CSV
using DataFrames
function read_india_fuels(data_directory, filename="Fuels_data.csv")
# Header Names
#'fuel_indices, Fuel, Cost_per_MMBtu, CO2_content_tons_perMMBtu'
df = CSV.read(data_directory * filename, copycols=true)
cp_df = deepcopy(df)
fuels = Dict()
# Builds the fuels Dictionary
for i in 1:size(df, 1)
fuels[df[i,:].Fuel] = cp_df[i, :]
end
return fuels
end
function read_india_generators(data_directory, generator_filename="Generators_data.csv" )
# Header Names
#'R_ID,zone,voltage_level,Resource,RENEW,THERM,DISP,NDISP,STOR,DR,HEAT,NACC,HYDRO,VRE,'
#'Commit,Min_Share,Max_Share,Existing_Cap_MW,New_Build,Cap_size,Max_Cap_MW,Min_Cap_MW,'
#'Min_Share_percent,Max_Share_percent,Inv_cost_per_MWyr,Inv_cost_per_Mwhyr,Fixed_OM_cost_per_MWyr,'
#'Var_OM_cost_per_MWh,Externality_cost_MWh,Start_cost,Start_fuel_MMBTU_per_start,Heat_rate_MMBTU_per_MWh,'
#'Fuel,Min_power,Self_disch,Eff_up,Eff_down,Ratio_power_to_energy,Max_DSM_delay,Ramp_Up_percentage,'
#'Ramp_Dn_percentage,Up_time,Down_time,NACC_Eff,NACC_Peak_to_Base,Reg_Up,Reg_Dn,Rsv_Up,Rsv_Dn,Reg_Cost,'
#'Rsv_Cost,Fixed_OM_cost_per_MWhyr,Var_OM_cost_per_MWh_in,Hydro_level'
df = CSV.read(data_directory * generator_filename, copycols=true)
cp_df = deepcopy(df)
# INITIALIZE NEW HEADERS IN DATAFRAME
cp_df[!, :Marginal_cost] = Array{Float64}(undef, size(df,1))
cp_df[!, :Num_generators] = Array{Int64}(undef, size(df,1))
generators = Dict()
fuels = read_india_fuels(data_directory)
# Builds the generators Dictionary
for i in 1:size(df, 1)
generators[df[i,:].R_ID] = cp_df[i,:]
#Existing Capacity conversion [ GW -> MW ]
generators[df[i,:].R_ID].Existing_Cap_MW = float(generators[df[i,:].R_ID].Existing_Cap_MW) * 1000.0
#Var OM cost conversion [ 1 / kWh -> 1 / MWh ]
generators[df[i,:].R_ID].Var_OM_cost_per_MWh = float(generators[df[i,:].R_ID].Var_OM_cost_per_MWh) * 1000.0
#Heat Rate MMBTU conversion [ 1 / kWh -> 1 / MWh ]
generators[df[i,:].R_ID].Heat_rate_MMBTU_per_MWh = float(generators[df[i,:].R_ID].Heat_rate_MMBTU_per_MWh) * 1000.0
#Start cost conversion [ 1 / kW -> 1 / MW ]
generators[df[i,:].R_ID].Start_cost = float(generators[df[i,:].R_ID].Start_cost) * 1000.0
#Float conversion to prevent type errors
generators[df[i,:].R_ID].Eff_up = float(generators[df[i,:].R_ID].Eff_up)
generators[df[i,:].R_ID].Eff_down = float(generators[df[i,:].R_ID].Eff_down)
generators[df[i,:].R_ID].Hydro_level = float(generators[df[i,:].R_ID].Hydro_level)
generators[df[i,:].R_ID].Ramp_Up_percentage = float(generators[df[i,:].R_ID].Ramp_Up_percentage)
generators[df[i,:].R_ID].Ramp_Dn_percentage = float(generators[df[i,:].R_ID].Ramp_Dn_percentage)
generators[df[i,:].R_ID].Self_disch = float(generators[df[i,:].R_ID].Self_disch)
#Int conversion to prevent type errors
generators[df[i,:].R_ID].Up_time = Int(floor(generators[df[i,:].R_ID].Up_time))
generators[df[i,:].R_ID].Down_time = Int(floor(generators[df[i,:].R_ID].Down_time))
#Calculate the Start up cost
generators[df[i,:].R_ID].Start_cost = generators[df[i,:].R_ID].Start_cost * generators[df[i,:].R_ID].Existing_Cap_MW
#Calculate the Marginal Cost per MWh - NEED TO READ IN FUELS DATA
generators[df[i,:].R_ID].Marginal_cost = (generators[df[i,:].R_ID].Var_OM_cost_per_MWh + generators[df[i,:].R_ID].Heat_rate_MMBTU_per_MWh * fuels[generators[df[i,:].R_ID].Fuel].Cost_per_MMBtu)
#Calculate the cluster size (Number of generators) with Cap size conversion [ GW -> MW ]
generators[df[i,:].R_ID].Num_generators = Int(floor(generators[df[i,:].R_ID].Existing_Cap_MW / (generators[df[i,:].R_ID].Cap_size * 1000.0 ) ))
end
return generators
end
function read_india_network(data_directory, filename="Network.csv")
# Header Names
#'Names,Share of zonal demand,Network_zones,VRE_Share,DistrZones,CO_2_Max_ton_MWh,'
#'InZoneLossFact_Int,InZoneLossFact_W,InZoneLossFact_I,InZoneLossFact_N,VRE_Share,'
#'Share_in_MV,DistrLossFact_LV_Net_Quad,DistrLossFact_MV_Net_Linear,DistrLossFact_LV_Total_Linear,'
#'Predicted Average Loss at Peak,Assumed Distr. Headroom,Distr_Max_Inject,Distr_Max_Withdraw,'
#'Distr_Inject_Max_Reinforcement_MW,Distr_Withdraw_Max_Reinforcement_MW,Distr_MV_Reinforcement_Cost_per_MW_yr,'
#'Distr_LV_Reinforcement_Cost_per_MW_yr,DistrMarginFact_LV_Linear,DistrMarginFact_LV_Quad,'
#'DistrMarginFact_MV_Linear,DistrMargin_MV_Max,DistrMargin_MV_DiscountFact,Network_lines,'
#'Link_names,z1,z2,z3,z4,z5,Line_Loss_Percentage,Line_Max_Flow_MW,Initial_by_2015,Line_Max_Reinforcement_MW,'
#'Line_Reinforcement_Cost_per_MW_yr,Line_Voltage_kV,Line_Resistance_ohms,Line_X_ohms,'
#'Line_R_ohms,Thetha_max,Peak_Withdrawal_Hours,Peak_Injection_Hours'
df = CSV.read(data_directory * filename, copycols=true)
cp_df = deepcopy(df)
links = Dict()
zones = ["1","2","3","4","5"]
for i in 1:size(df, 1)
# Locate bus0 and bus1
bus0 = ""
bus1 = ""
# Locate bus0 by value < 0
if df[i,:].z1 < 0
bus0 = "1"
elseif df[i,:].z2 < 0
bus0 = "2"
elseif df[i,:].z3 < 0
bus0 = "3"
elseif df[i,:].z4 < 0
bus0 = "4"
elseif df[i,:].z5 < 0
bus0 = "5"
end
# Locate bus1 by value > 0
if df[i,:].z1 > 0
bus1 = "1"
elseif df[i,:].z2 > 0
bus1 = "2"
elseif df[i,:].z3 > 0
bus1 = "3"
elseif df[i,:].z4 > 0
bus1 = "4"
elseif df[i,:].z5 > 0
bus1 = "5"
end
links[(bus0,bus1)] = cp_df[i,:]
#Line Capacity conversion [ GW -> MW ]
links[(bus0,bus1)].Line_Max_Flow_MW = float(links[(bus0,bus1)].Line_Max_Flow_MW) * 1000.0
end
return links, zones
end
function read_india_loads(data_directory, filename="Load_data.csv")
# Header Names
#'Voll,Demand_segment,Cost_of_demand_curtailment_perMW,'
#'Max_demand_curtailment,Subperiods,Hours_per_period,Sub_Weights,'
#'Time_index,Load_MW_z1,Load_MW_z2,Load_MW_z3,Load_MW_z4,Load_MW_z5'
df = CSV.read(data_directory * filename, copycols=true)
cp_df = deepcopy(df)
loads = Dict()
zone_loads = Dict("1"=>Array{Float64}(undef,0),
"2"=>Array{Float64}(undef,0),
"3"=>Array{Float64}(undef,0),
"4"=>Array{Float64}(undef,0),
"5"=>Array{Float64}(undef,0) )
# Create the zonal load dictionary and load dictionary
for i in 1:size(df, 1)
loads[df[i,:].Time_index] = cp_df[i,:]
# Load conversion [ GW -> MW ]
loads[df[i,:].Time_index].Load_MW_z1 = float(loads[df[i,:].Time_index].Load_MW_z1) * 1000.0
loads[df[i,:].Time_index].Load_MW_z2 = float(loads[df[i,:].Time_index].Load_MW_z2) * 1000.0
loads[df[i,:].Time_index].Load_MW_z3 = float(loads[df[i,:].Time_index].Load_MW_z3) * 1000.0
loads[df[i,:].Time_index].Load_MW_z4 = float(loads[df[i,:].Time_index].Load_MW_z4) * 1000.0
loads[df[i,:].Time_index].Load_MW_z5 = float(loads[df[i,:].Time_index].Load_MW_z5) * 1000.0
append!(zone_loads["1"],loads[df[i,:].Time_index].Load_MW_z1)
append!(zone_loads["2"],loads[df[i,:].Time_index].Load_MW_z2)
append!(zone_loads["3"],loads[df[i,:].Time_index].Load_MW_z3)
append!(zone_loads["4"],loads[df[i,:].Time_index].Load_MW_z4)
append!(zone_loads["5"],loads[df[i,:].Time_index].Load_MW_z5)
end
return loads, zone_loads
end
function read_india_variability(data_directory, filename="Generators_variability.csv")
# Header Names
#'Time_index,Solar/1,Wind/1,Biomass/1,Mini Hydro/1,'
#'Pumped Hydro Storage/1,Hydro Reservoir/1,Hydro Run of River/1,...'
df = CSV.read(data_directory * filename, copycols=true)
cp_df = deepcopy(df)
variability = Dict()
for i in 1:size(df, 1)
variability[df[i,:].Time_index] = cp_df[i,:]
end
return variability
end
read_india_generators("india_data_cases\\tony-2\\L,H,8,1275\\")
read_india_network("india_data_cases\\tony-2\\L,H,8,1275\\")
read_india_loads("india_data_cases\\tony-2\\L,H,8,1275\\")
read_india_variability("india_data_cases\\tony-2\\L,H,8,1275\\")