-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbits.hpp
219 lines (191 loc) · 6.7 KB
/
bits.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#pragma once
#include "base/assert.hpp"
#include <cstdint>
#include <limits>
#include <type_traits>
namespace bits
{
// Count the number of 1 bits. Implementation: see Hacker's delight book.
inline uint32_t PopCount(uint32_t x) noexcept
{
x -= ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x += (x >> 8);
x += (x >> 16);
return x & 0x3F;
}
inline uint32_t PopCount(uint8_t x) noexcept
{
return PopCount(static_cast<uint32_t>(x));
}
// Count the number of 1 bits in array p, length n bits.
// There is a better implementation at hackersdelight.org
inline uint32_t PopCount(uint32_t const * p, uint32_t n)
{
uint32_t s = 0;
for (uint32_t i = 0; i < n; i += 31)
{
uint32_t lim = (n < i + 31 ? n : i + 31);
uint32_t s8 = 0;
uint32_t x = 0;
for (uint32_t j = i; j < lim; ++j)
{
x = p[j];
x -= ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
s8 += x;
}
x = (s8 & 0x00FF00FF) + ((s8 >> 8) & 0x00FF00FF);
x = (x & 0x0000ffff) + (x >> 16);
s += x;
}
return s;
}
static const int SELECT1_ERROR = -1;
template <typename T> unsigned int select1(T x, unsigned int i)
{
// TODO: Fast implementation of select1.
ASSERT(i > 0 && i <= sizeof(T) * 8, (i));
for (unsigned int j = 0; j < sizeof(T) * 8; x >>= 1, ++j)
if (x & 1)
if (--i == 0)
return j;
return static_cast<unsigned int>(SELECT1_ERROR);
}
inline uint32_t PopCount(uint64_t x) noexcept
{
x = x - ((x & 0xAAAAAAAAAAAAAAAA) >> 1);
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0F;
x = (x * 0x0101010101010101) >> 56;
return static_cast<uint32_t>(x);
}
inline uint8_t FloorLog(uint64_t x) noexcept
{
#define CHECK_RSH(x, msb, offset) \
if (x >> offset) \
{ \
x >>= offset; \
msb += offset; \
}
uint8_t msb = 0;
CHECK_RSH(x, msb, 32);
CHECK_RSH(x, msb, 16);
CHECK_RSH(x, msb, 8);
CHECK_RSH(x, msb, 4);
CHECK_RSH(x, msb, 2);
CHECK_RSH(x, msb, 1);
#undef CHECK_RSH
return msb;
}
// Will be implemented when needed.
uint64_t PopCount(uint64_t const * p, uint64_t n);
template <typename T> T RoundLastBitsUpAndShiftRight(T x, T bits)
{
return (x & ((1 << bits) - 1)) ? (x >> bits) + 1 : (x >> bits);
}
template <typename T> struct LogBitSizeOfType;
template <> struct LogBitSizeOfType<uint8_t> { enum { value = 3 }; };
template <> struct LogBitSizeOfType<uint16_t> { enum { value = 4 }; };
template <> struct LogBitSizeOfType<uint32_t> { enum { value = 5 }; };
template <> struct LogBitSizeOfType<uint64_t> { enum { value = 6 }; };
template <typename T> T ROL(T x)
{
return (x << 1) | (x >> (sizeof(T) * 8 - 1));
}
template <typename T>
inline std::make_unsigned_t<T> ZigZagEncode(T x)
{
static_assert(std::is_signed<T>::value, "Type should be signed");
return (x << 1) ^ (x >> (sizeof(x) * 8 - 1));
}
template <typename T>
inline std::make_signed_t<T> ZigZagDecode(T x)
{
static_assert(std::is_unsigned<T>::value, "Type should be unsigned.");
return (x >> 1) ^ -static_cast<std::make_signed_t<T>>(x & 1);
}
inline uint32_t PerfectShuffle(uint32_t x)
{
x = ((x & 0x0000FF00) << 8) | ((x >> 8) & 0x0000FF00) | (x & 0xFF0000FF);
x = ((x & 0x00F000F0) << 4) | ((x >> 4) & 0x00F000F0) | (x & 0xF00FF00F);
x = ((x & 0x0C0C0C0C) << 2) | ((x >> 2) & 0x0C0C0C0C) | (x & 0xC3C3C3C3);
x = ((x & 0x22222222) << 1) | ((x >> 1) & 0x22222222) | (x & 0x99999999);
return x;
}
inline uint32_t PerfectUnshuffle(uint32_t x)
{
x = ((x & 0x22222222) << 1) | ((x >> 1) & 0x22222222) | (x & 0x99999999);
x = ((x & 0x0C0C0C0C) << 2) | ((x >> 2) & 0x0C0C0C0C) | (x & 0xC3C3C3C3);
x = ((x & 0x00F000F0) << 4) | ((x >> 4) & 0x00F000F0) | (x & 0xF00FF00F);
x = ((x & 0x0000FF00) << 8) | ((x >> 8) & 0x0000FF00) | (x & 0xFF0000FF);
return x;
}
// Returns the integer that has the bits of |x| at even-numbered positions
// and the bits of |y| at odd-numbered positions without changing the
// relative order of bits coming from |x| and |y|.
// That is, if the bits of |x| are {x31, x30, ..., x0},
// and the bits of |y| are {y31, y30, ..., y0},
// then the bits of the result are {y31, x31, y30, x30, ..., y0, x0}.
inline uint64_t BitwiseMerge(uint32_t x, uint32_t y)
{
uint32_t const hi = PerfectShuffle((y & 0xFFFF0000) | (x >> 16));
uint32_t const lo = PerfectShuffle(((y & 0xFFFF) << 16 ) | (x & 0xFFFF));
return (static_cast<uint64_t>(hi) << 32) + lo;
}
inline void BitwiseSplit(uint64_t v, uint32_t & x, uint32_t & y)
{
uint32_t const hi = bits::PerfectUnshuffle(static_cast<uint32_t>(v >> 32));
uint32_t const lo = bits::PerfectUnshuffle(static_cast<uint32_t>(v & 0xFFFFFFFFULL));
x = ((hi & 0xFFFF) << 16) | (lo & 0xFFFF);
y = (hi & 0xFFFF0000) | (lo >> 16);
}
// Returns 1 if bit is set and 0 otherwise.
inline uint8_t GetBit(void const * p, uint32_t offset)
{
uint8_t const * pData = static_cast<uint8_t const *>(p);
return (pData[offset >> 3] >> (offset & 7)) & 1;
}
inline void SetBitTo0(void * p, uint32_t offset)
{
uint8_t * pData = static_cast<uint8_t *>(p);
pData[offset >> 3] &= ~(1 << (offset & 7));
}
inline void SetBitTo1(void * p, uint32_t offset)
{
uint8_t * pData = static_cast<uint8_t *>(p);
pData[offset >> 3] |= (1 << (offset & 7));
}
// Compute number of zero bits from the most significant bits side.
inline uint32_t NumHiZeroBits32(uint32_t n)
{
if (n == 0) return 32;
uint32_t result = 0;
while ((n & (uint32_t(1) << 31)) == 0) { ++result; n <<= 1; }
return result;
}
inline uint32_t NumHiZeroBits64(uint64_t n)
{
if (n == 0) return 64;
uint32_t result = 0;
while ((n & (uint64_t(1) << 63)) == 0) { ++result; n <<= 1; }
return result;
}
// Computes number of bits needed to store the number, it is not equal to number of ones.
// E.g. if we have a number (in bit representation) 00001000b then NumUsedBits is 4.
inline uint32_t NumUsedBits(uint64_t n)
{
uint32_t result = 0;
while (n != 0) { ++result; n >>= 1; }
return result;
}
inline uint64_t GetFullMask(uint8_t numBits)
{
ASSERT_LESS_OR_EQUAL(numBits, 64, ());
return numBits == 64 ? std::numeric_limits<uint64_t>::max()
: (static_cast<uint64_t>(1) << numBits) - 1;
}
inline bool IsPow2Minus1(uint64_t n) { return (n & (n + 1)) == 0; }
} // namespace bits