-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfilter_split.py
86 lines (70 loc) · 3.39 KB
/
filter_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from random import shuffle
import os
import json
path_parsed_docs = 'data/docs/parsed/'
files = os.listdir(path_parsed_docs)
file2doc = {}
files_heading_as_summary = []
files_title_as_summary = []
for file in files:
with open(os.path.join(path_parsed_docs, file), 'r', encoding='UTF-8') as f:
doc = json.load(f)
if len(doc['article'].split()) > 5: #remove documents with empty articles
file2doc[file] = doc
if len(doc['article'].split()) > 5 and len(doc['title'].split()) > 1:
files_title_as_summary.append(file)
if len(doc['article'].split()) > 5 and len(doc['heading'].split()) > 5:
files_heading_as_summary.append(file)
similar_docs = [] #documents with at least article, heading or title in common
for el in ['article', 'heading', 'title']:
doc2file = {}
for file in file2doc:
if el == 'heading' and len(file2doc[file]['heading'].split()) < 5: #don't check very short headings: example 10007.json, 10005.json
continue
if file2doc[file][el] not in doc2file:
doc2file[file2doc[file][el]] = [file]
else:
doc2file[file2doc[file][el]].append(file)
for value in doc2file.values():
if len(value) > 1:
similar_docs.append(tuple(sorted(value)))
similar_docs = set(similar_docs)
file_to_remove_duplicates = list(set([file for el in similar_docs for file in el[1:]]))
with open("list_of_duplicates.txt", 'w') as f:
for el in similar_docs:
f.write(','.join(el)+'\n')
f.close()
with open('data/overlap/overlaps.json') as f:
novel_words = json.load(f)
files_heading_as_summary = list(set(novel_words.keys()).intersection(set(files_heading_as_summary)))
files_title_as_summary = list(set(novel_words.keys()).intersection(set(files_title_as_summary)))
files_heading_as_summary = [file for file in files_heading_as_summary if file not in file_to_remove_duplicates]
files_title_as_summary = [file for file in files_title_as_summary if file not in file_to_remove_duplicates]
novel_1grams_per_heading = sorted([float(novel_words[file]['h']['1']) for file in files_heading_as_summary])
alpha = .9
percentile = novel_1grams_per_heading[int(alpha * len(novel_1grams_per_heading))]
files_heading_as_summary = [file for file in files_heading_as_summary if novel_words[file]['h']['1'] < percentile]
n_test = 1500
n_valid = 1500
n_train_headings = len(files_heading_as_summary) - n_valid - n_test
n_train_titles = len(files_title_as_summary) - n_valid - n_test
splits_headings = ['test'] * n_test + ['valid'] * n_valid + ['train'] * n_train_headings
splits_titles = ['test'] * n_test + ['valid'] * n_valid + ['train'] * n_train_titles
shuffle(splits_headings)
shuffle(splits_titles)
def write_splits(files, splits, type_summary):
split2file = {}
assert len(files) == len(splits)
for idx, split in enumerate(splits):
if split not in split2file:
split2file[split] = []
split2file[split].append(files[idx])
path = 'splits_{}_as_summary'.format(type_summary)
if not os.path.isdir(path):
os.mkdir(path)
for split in split2file.keys():
with open(os.path.join(path, '{}.txt'.format(split)), 'w') as f:
f.write("\n".join(split2file[split]))
f.close()
write_splits(files_heading_as_summary, splits_headings, 'heading')
write_splits(files_title_as_summary, splits_titles, 'title')