-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmain.py
334 lines (262 loc) · 11.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import time
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
import models
import utils
import data_load
import random
import ipdb
import copy
#from torch.utils.tensorboard import SummaryWriter
# Training setting
parser = utils.get_parser()
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
'''
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
'''
# Load data
if args.dataset == 'cora':
adj, features, labels = data_load.load_data()
class_sample_num = 20
im_class_num = 3
elif args.dataset == 'BlogCatalog':
adj, features, labels = data_load.load_data_Blog()
im_class_num = 14 #set it to be the number less than 100
class_sample_num = 20 #not used
elif args.dataset == 'twitter':
adj, features, labels = data_load.load_sub_data_twitter()
im_class_num = 1
class_sample_num = 20 #not used
else:
print("no this dataset: {args.dataset}")
#for artificial imbalanced setting: only the last im_class_num classes are imbalanced
c_train_num = []
for i in range(labels.max().item() + 1):
if args.imbalance and i > labels.max().item()-im_class_num: #only imbalance the last classes
c_train_num.append(int(class_sample_num*args.im_ratio))
else:
c_train_num.append(class_sample_num)
#get train, validatio, test data split
if args.dataset == 'BlogCatalog':
idx_train, idx_val, idx_test, class_num_mat = utils.split_genuine(labels)
elif args.dataset == 'cora':
idx_train, idx_val, idx_test, class_num_mat = utils.split_arti(labels, c_train_num)
elif args.dataset == 'twitter':
idx_train, idx_val, idx_test, class_num_mat = utils.split_genuine(labels)
#method_1: oversampling in input domain
if args.setting == 'upsampling':
adj,features,labels,idx_train = utils.src_upsample(adj,features,labels,idx_train,portion=args.up_scale, im_class_num=im_class_num)
if args.setting == 'smote':
adj,features,labels,idx_train = utils.src_smote(adj,features,labels,idx_train,portion=args.up_scale, im_class_num=im_class_num)
# Model and optimizer
#if oversampling in the embedding space is required, model need to be changed
if args.setting != 'embed_up':
if args.model == 'sage':
encoder = models.Sage_En(nfeat=features.shape[1],
nhid=args.nhid,
nembed=args.nhid,
dropout=args.dropout)
classifier = models.Sage_Classifier(nembed=args.nhid,
nhid=args.nhid,
nclass=labels.max().item() + 1,
dropout=args.dropout)
elif args.model == 'gcn':
encoder = models.GCN_En(nfeat=features.shape[1],
nhid=args.nhid,
nembed=args.nhid,
dropout=args.dropout)
classifier = models.GCN_Classifier(nembed=args.nhid,
nhid=args.nhid,
nclass=labels.max().item() + 1,
dropout=args.dropout)
elif args.model == 'GAT':
encoder = models.GAT_En(nfeat=features.shape[1],
nhid=args.nhid,
nembed=args.nhid,
dropout=args.dropout)
classifier = models.GAT_Classifier(nembed=args.nhid,
nhid=args.nhid,
nclass=labels.max().item() + 1,
dropout=args.dropout)
else:
if args.model == 'sage':
encoder = models.Sage_En2(nfeat=features.shape[1],
nhid=args.nhid,
nembed=args.nhid,
dropout=args.dropout)
classifier = models.Classifier(nembed=args.nhid,
nhid=args.nhid,
nclass=labels.max().item() + 1,
dropout=args.dropout)
elif args.model == 'gcn':
encoder = models.GCN_En2(nfeat=features.shape[1],
nhid=args.nhid,
nembed=args.nhid,
dropout=args.dropout)
classifier = models.Classifier(nembed=args.nhid,
nhid=args.nhid,
nclass=labels.max().item() + 1,
dropout=args.dropout)
elif args.model == 'GAT':
encoder = models.GAT_En2(nfeat=features.shape[1],
nhid=args.nhid,
nembed=args.nhid,
dropout=args.dropout)
classifier = models.Classifier(nembed=args.nhid,
nhid=args.nhid,
nclass=labels.max().item() + 1,
dropout=args.dropout)
decoder = models.Decoder(nembed=args.nhid,
dropout=args.dropout)
optimizer_en = optim.Adam(encoder.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
optimizer_cls = optim.Adam(classifier.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
optimizer_de = optim.Adam(decoder.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
if args.cuda:
encoder = encoder.cuda()
classifier = classifier.cuda()
decoder = decoder.cuda()
features = features.cuda()
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
def train(epoch):
t = time.time()
encoder.train()
classifier.train()
decoder.train()
optimizer_en.zero_grad()
optimizer_cls.zero_grad()
optimizer_de.zero_grad()
embed = encoder(features, adj)
if args.setting == 'recon_newG' or args.setting == 'recon' or args.setting == 'newG_cls':
ori_num = labels.shape[0]
embed, labels_new, idx_train_new, adj_up = utils.recon_upsample(embed, labels, idx_train, adj=adj.detach().to_dense(),portion=args.up_scale, im_class_num=im_class_num)
generated_G = decoder(embed)
loss_rec = utils.adj_mse_loss(generated_G[:ori_num, :][:, :ori_num], adj.detach().to_dense())
#ipdb.set_trace()
if not args.opt_new_G:
adj_new = copy.deepcopy(generated_G.detach())
threshold = 0.5
adj_new[adj_new<threshold] = 0.0
adj_new[adj_new>=threshold] = 1.0
#ipdb.set_trace()
edge_ac = adj_new[:ori_num, :ori_num].eq(adj.to_dense()).double().sum()/(ori_num**2)
else:
adj_new = generated_G
edge_ac = F.l1_loss(adj_new[:ori_num, :ori_num], adj.to_dense(), reduction='mean')
#calculate generation information
exist_edge_prob = adj_new[:ori_num, :ori_num].mean() #edge prob for existing nodes
generated_edge_prob = adj_new[ori_num:, :ori_num].mean() #edge prob for generated nodes
print("edge acc: {:.4f}, exist_edge_prob: {:.4f}, generated_edge_prob: {:.4f}".format(edge_ac.item(), exist_edge_prob.item(), generated_edge_prob.item()))
adj_new = torch.mul(adj_up, adj_new)
exist_edge_prob = adj_new[:ori_num, :ori_num].mean() #edge prob for existing nodes
generated_edge_prob = adj_new[ori_num:, :ori_num].mean() #edge prob for generated nodes
print("after filtering, edge acc: {:.4f}, exist_edge_prob: {:.4f}, generated_edge_prob: {:.4f}".format(edge_ac.item(), exist_edge_prob.item(), generated_edge_prob.item()))
adj_new[:ori_num, :][:, :ori_num] = adj.detach().to_dense()
#adj_new = adj_new.to_sparse()
#ipdb.set_trace()
if not args.opt_new_G:
adj_new = adj_new.detach()
if args.setting == 'newG_cls':
idx_train_new = idx_train
elif args.setting == 'embed_up':
#perform SMOTE in embedding space
embed, labels_new, idx_train_new = utils.recon_upsample(embed, labels, idx_train,portion=args.up_scale, im_class_num=im_class_num)
adj_new = adj
else:
labels_new = labels
idx_train_new = idx_train
adj_new = adj
#ipdb.set_trace()
output = classifier(embed, adj_new)
if args.setting == 'reweight':
weight = features.new((labels.max().item()+1)).fill_(1)
weight[-im_class_num:] = 1+args.up_scale
loss_train = F.cross_entropy(output[idx_train_new], labels_new[idx_train_new], weight=weight)
else:
loss_train = F.cross_entropy(output[idx_train_new], labels_new[idx_train_new])
acc_train = utils.accuracy(output[idx_train], labels_new[idx_train])
if args.setting == 'recon_newG':
loss = loss_train+loss_rec*args.rec_weight
elif args.setting == 'recon':
loss = loss_rec + 0*loss_train
else:
loss = loss_train
loss_rec = loss_train
loss.backward()
if args.setting == 'newG_cls':
optimizer_en.zero_grad()
optimizer_de.zero_grad()
else:
optimizer_en.step()
optimizer_cls.step()
if args.setting == 'recon_newG' or args.setting == 'recon':
optimizer_de.step()
loss_val = F.cross_entropy(output[idx_val], labels[idx_val])
acc_val = utils.accuracy(output[idx_val], labels[idx_val])
#ipdb.set_trace()
utils.print_class_acc(output[idx_val], labels[idx_val], class_num_mat[:,1])
print('Epoch: {:05d}'.format(epoch+1),
'loss_train: {:.4f}'.format(loss_train.item()),
'loss_rec: {:.4f}'.format(loss_rec.item()),
'acc_train: {:.4f}'.format(acc_train.item()),
'loss_val: {:.4f}'.format(loss_val.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
'time: {:.4f}s'.format(time.time() - t))
def test(epoch = 0):
encoder.eval()
classifier.eval()
decoder.eval()
embed = encoder(features, adj)
output = classifier(embed, adj)
loss_test = F.cross_entropy(output[idx_test], labels[idx_test])
acc_test = utils.accuracy(output[idx_test], labels[idx_test])
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
utils.print_class_acc(output[idx_test], labels[idx_test], class_num_mat[:,2], pre='test')
'''
if epoch==40:
torch
'''
def save_model(epoch):
saved_content = {}
saved_content['encoder'] = encoder.state_dict()
saved_content['decoder'] = decoder.state_dict()
saved_content['classifier'] = classifier.state_dict()
torch.save(saved_content, 'checkpoint/{}/{}_{}_{}_{}.pth'.format(args.dataset,args.setting,epoch, args.opt_new_G, args.im_ratio))
return
def load_model(filename):
loaded_content = torch.load('checkpoint/{}/{}.pth'.format(args.dataset,filename), map_location=lambda storage, loc: storage)
encoder.load_state_dict(loaded_content['encoder'])
decoder.load_state_dict(loaded_content['decoder'])
classifier.load_state_dict(loaded_content['classifier'])
print("successfully loaded: "+ filename)
return
# Train model
if args.load is not None:
load_model(args.load)
t_total = time.time()
for epoch in range(args.epochs):
train(epoch)
if epoch % 10 == 0:
test(epoch)
if epoch % 100 == 0:
save_model(epoch)
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
# Testing
test()