-
-
Notifications
You must be signed in to change notification settings - Fork 46.1k
/
Copy pathcanny.py
143 lines (119 loc) · 5.28 KB
/
canny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import cv2
import numpy as np
from digital_image_processing.filters.convolve import img_convolve
from digital_image_processing.filters.sobel_filter import sobel_filter
PI = 180
def gen_gaussian_kernel(k_size, sigma):
center = k_size // 2
x, y = np.mgrid[0 - center : k_size - center, 0 - center : k_size - center]
g = (
1
/ (2 * np.pi * sigma)
* np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma)))
)
return g
def suppress_non_maximum(image_shape, gradient_direction, sobel_grad):
"""
Non-maximum suppression. If the edge strength of the current pixel is the largest
compared to the other pixels in the mask with the same direction, the value will be
preserved. Otherwise, the value will be suppressed.
"""
destination = np.zeros(image_shape)
for row in range(1, image_shape[0] - 1):
for col in range(1, image_shape[1] - 1):
direction = gradient_direction[row, col]
if (
0 <= direction < PI / 8
or 15 * PI / 8 <= direction <= 2 * PI
or 7 * PI / 8 <= direction <= 9 * PI / 8
):
w = sobel_grad[row, col - 1]
e = sobel_grad[row, col + 1]
if sobel_grad[row, col] >= w and sobel_grad[row, col] >= e:
destination[row, col] = sobel_grad[row, col]
elif (
PI / 8 <= direction < 3 * PI / 8
or 9 * PI / 8 <= direction < 11 * PI / 8
):
sw = sobel_grad[row + 1, col - 1]
ne = sobel_grad[row - 1, col + 1]
if sobel_grad[row, col] >= sw and sobel_grad[row, col] >= ne:
destination[row, col] = sobel_grad[row, col]
elif (
3 * PI / 8 <= direction < 5 * PI / 8
or 11 * PI / 8 <= direction < 13 * PI / 8
):
n = sobel_grad[row - 1, col]
s = sobel_grad[row + 1, col]
if sobel_grad[row, col] >= n and sobel_grad[row, col] >= s:
destination[row, col] = sobel_grad[row, col]
elif (
5 * PI / 8 <= direction < 7 * PI / 8
or 13 * PI / 8 <= direction < 15 * PI / 8
):
nw = sobel_grad[row - 1, col - 1]
se = sobel_grad[row + 1, col + 1]
if sobel_grad[row, col] >= nw and sobel_grad[row, col] >= se:
destination[row, col] = sobel_grad[row, col]
return destination
def detect_high_low_threshold(
image_shape, destination, threshold_low, threshold_high, weak, strong
):
"""
High-Low threshold detection. If an edge pixel's gradient value is higher
than the high threshold value, it is marked as a strong edge pixel. If an
edge pixel's gradient value is smaller than the high threshold value and
larger than the low threshold value, it is marked as a weak edge pixel. If
an edge pixel's value is smaller than the low threshold value, it will be
suppressed.
"""
for row in range(1, image_shape[0] - 1):
for col in range(1, image_shape[1] - 1):
if destination[row, col] >= threshold_high:
destination[row, col] = strong
elif destination[row, col] <= threshold_low:
destination[row, col] = 0
else:
destination[row, col] = weak
def track_edge(image_shape, destination, weak, strong):
"""
Edge tracking. Usually a weak edge pixel caused from true edges will be connected
to a strong edge pixel while noise responses are unconnected. As long as there is
one strong edge pixel that is involved in its 8-connected neighborhood, that weak
edge point can be identified as one that should be preserved.
"""
for row in range(1, image_shape[0]):
for col in range(1, image_shape[1]):
if destination[row, col] == weak:
if 255 in (
destination[row, col + 1],
destination[row, col - 1],
destination[row - 1, col],
destination[row + 1, col],
destination[row - 1, col - 1],
destination[row + 1, col - 1],
destination[row - 1, col + 1],
destination[row + 1, col + 1],
):
destination[row, col] = strong
else:
destination[row, col] = 0
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
# gaussian_filter
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
# get the gradient and degree by sobel_filter
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
gradient_direction = PI + np.rad2deg(sobel_theta)
destination = suppress_non_maximum(image.shape, gradient_direction, sobel_grad)
detect_high_low_threshold(
image.shape, destination, threshold_low, threshold_high, weak, strong
)
track_edge(image.shape, destination, weak, strong)
return destination
if __name__ == "__main__":
# read original image in gray mode
lena = cv2.imread(r"../image_data/lena.jpg", 0)
# canny edge detection
canny_destination = canny(lena)
cv2.imshow("canny", canny_destination)
cv2.waitKey(0)