-
Notifications
You must be signed in to change notification settings - Fork 19.7k
/
Copy pathRRScheduling.java
104 lines (87 loc) · 3.37 KB
/
RRScheduling.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/**
* @author Md Asif Joardar
*/
package com.thealgorithms.scheduling;
import com.thealgorithms.devutils.entities.ProcessDetails;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
/**
* The Round-robin scheduling algorithm is a kind of preemptive First come, First Serve CPU
* Scheduling algorithm. This can be understood here -
* https://www.scaler.com/topics/round-robin-scheduling-in-os/
*/
public class RRScheduling {
private List<ProcessDetails> processes;
private int quantumTime;
RRScheduling(final List<ProcessDetails> processes, int quantumTime) {
this.processes = processes;
this.quantumTime = quantumTime;
}
public void scheduleProcesses() {
evaluateTurnAroundTime();
evaluateWaitingTime();
}
private void evaluateTurnAroundTime() {
int processesNumber = processes.size();
if (processesNumber == 0) {
return;
}
Queue<Integer> queue = new LinkedList<>();
queue.add(0);
int currentTime = 0; // keep track of the time
int completed = 0;
int[] mark = new int[processesNumber];
Arrays.fill(mark, 0);
mark[0] = 1;
// a copy of burst time to store the remaining burst time
int[] remainingBurstTime = new int[processesNumber];
for (int i = 0; i < processesNumber; i++) {
remainingBurstTime[i] = processes.get(i).getBurstTime();
}
while (completed != processesNumber) {
int index = queue.poll();
if (remainingBurstTime[index] == processes.get(index).getBurstTime()) {
currentTime = Math.max(currentTime, processes.get(index).getArrivalTime());
}
if (remainingBurstTime[index] - quantumTime > 0) {
remainingBurstTime[index] -= quantumTime;
currentTime += quantumTime;
} else {
currentTime += remainingBurstTime[index];
processes.get(index).setTurnAroundTimeTime(currentTime - processes.get(index).getArrivalTime());
completed++;
remainingBurstTime[index] = 0;
}
// If some process has arrived when this process was executing, insert them into the
// queue.
for (int i = 1; i < processesNumber; i++) {
if (remainingBurstTime[i] > 0 && processes.get(i).getArrivalTime() <= currentTime && mark[i] == 0) {
mark[i] = 1;
queue.add(i);
}
}
// If the current process has burst time remaining, push the process into the queue
// again.
if (remainingBurstTime[index] > 0) {
queue.add(index);
}
// If the queue is empty, pick the first process from the list that is not completed.
if (queue.isEmpty()) {
for (int i = 1; i < processesNumber; i++) {
if (remainingBurstTime[i] > 0) {
mark[i] = 1;
queue.add(i);
break;
}
}
}
}
}
private void evaluateWaitingTime() {
for (final var process : processes) {
process.setWaitingTime(process.getTurnAroundTimeTime() - process.getBurstTime());
}
}
}