-
Notifications
You must be signed in to change notification settings - Fork 19.7k
/
Copy pathDijkstra.java
248 lines (217 loc) · 7.48 KB
/
Dijkstra.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
package com.thealgorithms.others;
import java.util.HashMap;
import java.util.Map;
import java.util.NavigableSet;
import java.util.TreeSet;
/**
* Dijkstra's algorithm,is a graph search algorithm that solves the
* single-source shortest path problem for a graph with nonnegative edge path
* costs, producing a shortest path tree.
*
* <p>
* NOTE: The inputs to Dijkstra's algorithm are a directed and weighted graph
* consisting of 2 or more nodes, generally represented by an adjacency matrix
* or list, and a start node.
*
* <p>
* Original source of code:
* https://rosettacode.org/wiki/Dijkstra%27s_algorithm#Java Also most of the
* comments are from RosettaCode.
*/
public final class Dijkstra {
private Dijkstra() {
}
private static final Graph.Edge[] GRAPH = {
// Distance from node "a" to node "b" is 7.
// In the current Graph there is no way to move the other way (e,g, from "b" to "a"),
// a new edge would be needed for that
new Graph.Edge("a", "b", 7),
new Graph.Edge("a", "c", 9),
new Graph.Edge("a", "f", 14),
new Graph.Edge("b", "c", 10),
new Graph.Edge("b", "d", 15),
new Graph.Edge("c", "d", 11),
new Graph.Edge("c", "f", 2),
new Graph.Edge("d", "e", 6),
new Graph.Edge("e", "f", 9),
};
private static final String START = "a";
private static final String END = "e";
/**
* main function Will run the code with "GRAPH" that was defined above.
*/
public static void main(String[] args) {
Graph g = new Graph(GRAPH);
g.dijkstra(START);
g.printPath(END);
// g.printAllPaths();
}
}
class Graph {
// mapping of vertex names to Vertex objects, built from a set of Edges
private final Map<String, Vertex> graph;
/**
* One edge of the graph (only used by Graph constructor)
*/
public static class Edge {
public final String v1;
public final String v2;
public final int dist;
Edge(String v1, String v2, int dist) {
this.v1 = v1;
this.v2 = v2;
this.dist = dist;
}
}
/**
* One vertex of the graph, complete with mappings to neighbouring vertices
*/
public static class Vertex implements Comparable<Vertex> {
public final String name;
// MAX_VALUE assumed to be infinity
public int dist = Integer.MAX_VALUE;
public Vertex previous = null;
public final Map<Vertex, Integer> neighbours = new HashMap<>();
Vertex(String name) {
this.name = name;
}
private void printPath() {
if (this == this.previous) {
System.out.printf("%s", this.name);
} else if (this.previous == null) {
System.out.printf("%s(unreached)", this.name);
} else {
this.previous.printPath();
System.out.printf(" -> %s(%d)", this.name, this.dist);
}
}
public int compareTo(Vertex other) {
if (dist == other.dist) {
return name.compareTo(other.name);
}
return Integer.compare(dist, other.dist);
}
@Override
public boolean equals(Object object) {
if (this == object) {
return true;
}
if (object == null || getClass() != object.getClass()) {
return false;
}
if (!super.equals(object)) {
return false;
}
Vertex vertex = (Vertex) object;
if (dist != vertex.dist) {
return false;
}
if (name != null ? !name.equals(vertex.name) : vertex.name != null) {
return false;
}
if (previous != null ? !previous.equals(vertex.previous) : vertex.previous != null) {
return false;
}
return neighbours != null ? neighbours.equals(vertex.neighbours) : vertex.neighbours == null;
}
@Override
public int hashCode() {
int result = super.hashCode();
result = 31 * result + (name != null ? name.hashCode() : 0);
result = 31 * result + dist;
result = 31 * result + (previous != null ? previous.hashCode() : 0);
result = 31 * result + (neighbours != null ? neighbours.hashCode() : 0);
return result;
}
@Override
public String toString() {
return "(" + name + ", " + dist + ")";
}
}
/**
* Builds a graph from a set of edges
*/
Graph(Edge[] edges) {
graph = new HashMap<>(edges.length);
// one pass to find all vertices
for (Edge e : edges) {
if (!graph.containsKey(e.v1)) {
graph.put(e.v1, new Vertex(e.v1));
}
if (!graph.containsKey(e.v2)) {
graph.put(e.v2, new Vertex(e.v2));
}
}
// another pass to set neighbouring vertices
for (Edge e : edges) {
graph.get(e.v1).neighbours.put(graph.get(e.v2), e.dist);
// graph.get(e.v2).neighbours.put(graph.get(e.v1), e.dist); // also do this for an
// undirected graph
}
}
/**
* Runs dijkstra using a specified source vertex
*/
public void dijkstra(String startName) {
if (!graph.containsKey(startName)) {
System.err.printf("Graph doesn't contain start vertex \"%s\"%n", startName);
return;
}
final Vertex source = graph.get(startName);
NavigableSet<Vertex> q = new TreeSet<>();
// set-up vertices
for (Vertex v : graph.values()) {
v.previous = v == source ? source : null;
v.dist = v == source ? 0 : Integer.MAX_VALUE;
q.add(v);
}
dijkstra(q);
}
/**
* Implementation of dijkstra's algorithm using a binary heap.
*/
private void dijkstra(final NavigableSet<Vertex> q) {
Vertex u;
Vertex v;
while (!q.isEmpty()) {
// vertex with shortest distance (first iteration will return source)
u = q.pollFirst();
if (u.dist == Integer.MAX_VALUE) {
break; // we can ignore u (and any other remaining vertices) since they are
// unreachable
}
// look at distances to each neighbour
for (Map.Entry<Vertex, Integer> a : u.neighbours.entrySet()) {
v = a.getKey(); // the neighbour in this iteration
final int alternateDist = u.dist + a.getValue();
if (alternateDist < v.dist) { // shorter path to neighbour found
q.remove(v);
v.dist = alternateDist;
v.previous = u;
q.add(v);
}
}
}
}
/**
* Prints a path from the source to the specified vertex
*/
public void printPath(String endName) {
if (!graph.containsKey(endName)) {
System.err.printf("Graph doesn't contain end vertex \"%s\"%n", endName);
return;
}
graph.get(endName).printPath();
System.out.println();
}
/**
* Prints the path from the source to every vertex (output order is not
* guaranteed)
*/
public void printAllPaths() {
for (Vertex v : graph.values()) {
v.printPath();
System.out.println();
}
}
}