-
Notifications
You must be signed in to change notification settings - Fork 19.7k
/
Copy pathKnapsack.java
55 lines (47 loc) · 2.21 KB
/
Knapsack.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
package com.thealgorithms.dynamicprogramming;
import java.util.Arrays;
/**
* A Dynamic Programming based solution for the 0-1 Knapsack problem.
* This class provides a method, `knapSack`, that calculates the maximum value that can be
* obtained from a given set of items with weights and values, while not exceeding a
* given weight capacity.
*
* @see <a href="https://en.wikipedia.org/?title=0-1_Knapsack_problem">0-1 Knapsack Problem </a>
*/
public final class Knapsack {
private Knapsack() {
}
private static void throwIfInvalidInput(final int weightCapacity, final int[] weights, final int[] values) {
if (weightCapacity < 0) {
throw new IllegalArgumentException("Weight capacity should not be negative.");
}
if (weights == null || values == null || weights.length != values.length) {
throw new IllegalArgumentException("Input arrays must not be null and must have the same length.");
}
if (Arrays.stream(weights).anyMatch(w -> w <= 0)) {
throw new IllegalArgumentException("Input array should not contain non-positive weight(s).");
}
}
/**
* Solves the 0-1 Knapsack problem using Dynamic Programming.
*
* @param weightCapacity The maximum weight capacity of the knapsack.
* @param weights An array of item weights.
* @param values An array of item values.
* @return The maximum value that can be obtained without exceeding the weight capacity.
* @throws IllegalArgumentException If the input arrays are null or have different lengths.
*/
public static int knapSack(final int weightCapacity, final int[] weights, final int[] values) throws IllegalArgumentException {
throwIfInvalidInput(weightCapacity, weights, values);
// DP table to store the state of the maximum possible return for a given weight capacity.
int[] dp = new int[weightCapacity + 1];
for (int i = 0; i < values.length; i++) {
for (int w = weightCapacity; w > 0; w--) {
if (weights[i] <= w) {
dp[w] = Math.max(dp[w], dp[w - weights[i]] + values[i]);
}
}
}
return dp[weightCapacity];
}
}