-
Notifications
You must be signed in to change notification settings - Fork 19.7k
/
Copy pathFibonacci.java
119 lines (108 loc) · 3.84 KB
/
Fibonacci.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
package com.thealgorithms.dynamicprogramming;
import java.util.HashMap;
import java.util.Map;
/**
* @author Varun Upadhyay (https://github.com/varunu28)
*/
public final class Fibonacci {
private Fibonacci() {
}
static final Map<Integer, Integer> CACHE = new HashMap<>();
/**
* This method finds the nth fibonacci number using memoization technique
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
* @throws IllegalArgumentException if n is negative
*/
public static int fibMemo(int n) {
if (n < 0) {
throw new IllegalArgumentException("Input n must be non-negative");
}
if (CACHE.containsKey(n)) {
return CACHE.get(n);
}
int f;
if (n <= 1) {
f = n;
} else {
f = fibMemo(n - 1) + fibMemo(n - 2);
CACHE.put(n, f);
}
return f;
}
/**
* This method finds the nth fibonacci number using bottom up
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
* @throws IllegalArgumentException if n is negative
*/
public static int fibBotUp(int n) {
if (n < 0) {
throw new IllegalArgumentException("Input n must be non-negative");
}
Map<Integer, Integer> fib = new HashMap<>();
for (int i = 0; i <= n; i++) {
int f;
if (i <= 1) {
f = i;
} else {
f = fib.get(i - 1) + fib.get(i - 2);
}
fib.put(i, f);
}
return fib.get(n);
}
/**
* This method finds the nth fibonacci number using bottom up
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
* <p>
* This is optimized version of Fibonacci Program. Without using Hashmap and
* recursion. It saves both memory and time. Space Complexity will be O(1)
* Time Complexity will be O(n)
* <p>
* Whereas , the above functions will take O(n) Space.
* @throws IllegalArgumentException if n is negative
* @author Shoaib Rayeen (https://github.com/shoaibrayeen)
*/
public static int fibOptimized(int n) {
if (n < 0) {
throw new IllegalArgumentException("Input n must be non-negative");
}
if (n == 0) {
return 0;
}
int prev = 0;
int res = 1;
int next;
for (int i = 2; i <= n; i++) {
next = prev + res;
prev = res;
res = next;
}
return res;
}
/**
* We have only defined the nth Fibonacci number in terms of the two before it. Now, we will
* look at Binet's formula to calculate the nth Fibonacci number in constant time. The Fibonacci
* terms maintain a ratio called golden ratio denoted by Φ, the Greek character pronounced
* ‘phi'. First, let's look at how the golden ratio is calculated: Φ = ( 1 + √5 )/2
* = 1.6180339887... Now, let's look at Binet's formula: Sn = Φⁿ–(– Φ⁻ⁿ)/√5 We first calculate
* the squareRootof5 and phi and store them in variables. Later, we apply Binet's formula to get
* the required term. Time Complexity will be O(1)
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
* @throws IllegalArgumentException if n is negative
*/
public static int fibBinet(int n) {
if (n < 0) {
throw new IllegalArgumentException("Input n must be non-negative");
}
double squareRootOf5 = Math.sqrt(5);
double phi = (1 + squareRootOf5) / 2;
return (int) ((Math.pow(phi, n) - Math.pow(-phi, -n)) / squareRootOf5);
}
}