-
Notifications
You must be signed in to change notification settings - Fork 19.7k
/
Copy pathPostOrderTraversal.java
68 lines (62 loc) · 1.9 KB
/
PostOrderTraversal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
package com.thealgorithms.datastructures.trees;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.LinkedList;
import java.util.List;
/**
* Given tree is traversed in a 'post-order' way: LEFT -> RIGHT -> ROOT.
* Below are given the recursive and iterative implementations.
* <p>
* Complexities:
* Recursive: O(n) - time, O(n) - space, where 'n' is the number of nodes in a tree.
* <p>
* Iterative: O(n) - time, O(h) - space, where 'n' is the number of nodes in a tree
* and 'h' is the height of a binary tree.
* In the worst case 'h' can be O(n) if tree is completely unbalanced, for instance:
* 5
* \
* 6
* \
* 7
* \
* 8
*
* @author Albina Gimaletdinova on 21/02/2023
*/
public final class PostOrderTraversal {
private PostOrderTraversal() {
}
public static List<Integer> recursivePostOrder(BinaryTree.Node root) {
List<Integer> result = new ArrayList<>();
recursivePostOrder(root, result);
return result;
}
public static List<Integer> iterativePostOrder(BinaryTree.Node root) {
LinkedList<Integer> result = new LinkedList<>();
if (root == null) {
return result;
}
Deque<BinaryTree.Node> stack = new ArrayDeque<>();
stack.push(root);
while (!stack.isEmpty()) {
BinaryTree.Node node = stack.pop();
result.addFirst(node.data);
if (node.left != null) {
stack.push(node.left);
}
if (node.right != null) {
stack.push(node.right);
}
}
return result;
}
private static void recursivePostOrder(BinaryTree.Node root, List<Integer> result) {
if (root == null) {
return;
}
recursivePostOrder(root.left, result);
recursivePostOrder(root.right, result);
result.add(root.data);
}
}