-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathqr_eigen_values.cpp
284 lines (247 loc) · 8.53 KB
/
qr_eigen_values.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/**
* @file
* \brief Compute real eigen values and eigen vectors of a symmetric matrix
* using [QR decomposition](https://en.wikipedia.org/wiki/QR_decomposition)
* method.
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "./qr_decompose.h"
using qr_algorithm::operator<<;
#define LIMS 9 /**< limit of range of matrix values */
/**
* create a symmetric square matrix of given size with random elements. A
* symmetric square matrix will *always* have real eigen values.
*
* \param[out] A matrix to create (must be pre-allocated in memory)
*/
void create_matrix(std::valarray<std::valarray<double>> *A) {
int i, j, tmp, lim2 = LIMS >> 1;
int N = A->size();
#ifdef _OPENMP
#pragma omp for
#endif
for (i = 0; i < N; i++) {
A[0][i][i] = (std::rand() % LIMS) - lim2;
for (j = i + 1; j < N; j++) {
tmp = (std::rand() % LIMS) - lim2;
A[0][i][j] = tmp; // summetrically distribute random values
A[0][j][i] = tmp;
}
}
}
/**
* Perform multiplication of two matrices.
* * R2 must be equal to C1
* * Resultant matrix size should be R1xC2
* \param[in] A first matrix to multiply
* \param[in] B second matrix to multiply
* \param[out] OUT output matrix (must be pre-allocated)
* \returns pointer to resultant matrix
*/
void mat_mul(const std::valarray<std::valarray<double>> &A,
const std::valarray<std::valarray<double>> &B,
std::valarray<std::valarray<double>> *OUT) {
int R1 = A.size();
int C1 = A[0].size();
int R2 = B.size();
int C2 = B[0].size();
if (C1 != R2) {
perror("Matrix dimensions mismatch!");
return;
}
for (int i = 0; i < R1; i++) {
for (int j = 0; j < C2; j++) {
OUT[0][i][j] = 0.f;
for (int k = 0; k < C1; k++) {
OUT[0][i][j] += A[i][k] * B[k][j];
}
}
}
}
namespace qr_algorithm {
/** Compute eigen values using iterative shifted QR decomposition algorithm as
* follows:
* 1. Use last diagonal element of A as eigen value approximation \f$c\f$
* 2. Shift diagonals of matrix \f$A' = A - cI\f$
* 3. Decompose matrix \f$A'=QR\f$
* 4. Compute next approximation \f$A'_1 = RQ \f$
* 5. Shift diagonals back \f$A_1 = A'_1 + cI\f$
* 6. Termination condition check: last element below diagonal is almost 0
* 1. If not 0, go back to step 1 with the new approximation \f$A_1\f$
* 2. If 0, continue to step 7
* 7. Save last known \f$c\f$ as the eigen value.
* 8. Are all eigen values found?
* 1. If not, remove last row and column of \f$A_1\f$ and go back to step 1.
* 2. If yes, stop.
*
* \note The matrix \f$A\f$ gets modified
*
* \param[in,out] A matrix to compute eigen values for
* \param[in] print_intermediates (optional) whether to print intermediate A, Q
* and R matrices (default = `false`)
*/
std::valarray<double> eigen_values(std::valarray<std::valarray<double>> *A,
bool print_intermediates = false) {
int rows = A->size();
int columns = rows;
int counter = 0, num_eigs = rows - 1;
double last_eig = 0;
std::valarray<std::valarray<double>> Q(rows);
std::valarray<std::valarray<double>> R(columns);
/* number of eigen values = matrix size */
std::valarray<double> eigen_vals(rows);
for (int i = 0; i < rows; i++) {
Q[i] = std::valarray<double>(columns);
R[i] = std::valarray<double>(columns);
}
/* continue till all eigen values are found */
while (num_eigs > 0) {
/* iterate with QR decomposition */
while (std::abs(A[0][num_eigs][num_eigs - 1]) >
std::numeric_limits<double>::epsilon()) {
// initial approximation = last diagonal element
last_eig = A[0][num_eigs][num_eigs];
for (int i = 0; i < rows; i++) {
A[0][i][i] -= last_eig; /* A - cI */
}
qr_decompose(*A, &Q, &R);
if (print_intermediates) {
std::cout << *A << "\n";
std::cout << Q << "\n";
std::cout << R << "\n";
printf("-------------------- %d ---------------------\n",
++counter);
}
// new approximation A' = R * Q
mat_mul(R, Q, A);
for (int i = 0; i < rows; i++) {
A[0][i][i] += last_eig; /* A + cI */
}
}
/* store the converged eigen value */
eigen_vals[num_eigs] = last_eig;
// A[0][num_eigs][num_eigs];
if (print_intermediates) {
std::cout << "========================\n";
std::cout << "Eigen value: " << last_eig << ",\n";
std::cout << "========================\n";
}
num_eigs--;
rows--;
columns--;
}
eigen_vals[0] = A[0][0][0];
if (print_intermediates) {
std::cout << Q << "\n";
std::cout << R << "\n";
}
return eigen_vals;
}
} // namespace qr_algorithm
/**
* test function to compute eigen values of a 2x2 matrix
* \f[\begin{bmatrix}
* 5 & 7\\
* 7 & 11
* \end{bmatrix}\f]
* which are approximately, {15.56158, 0.384227}
*/
void test1() {
std::valarray<std::valarray<double>> X = {{5, 7}, {7, 11}};
double y[] = {15.56158, 0.384227}; // corresponding y-values
std::cout << "------- Test 1 -------" << std::endl;
std::valarray<double> eig_vals = qr_algorithm::eigen_values(&X);
for (int i = 0; i < 2; i++) {
std::cout << i + 1 << "/2 Checking for " << y[i] << " --> ";
bool result = false;
for (int j = 0; j < 2 && !result; j++) {
if (std::abs(y[i] - eig_vals[j]) < 0.1) {
result = true;
std::cout << "(" << eig_vals[j] << ") ";
}
}
assert(result); // ensure that i^th expected eigen value was computed
std::cout << "found\n";
}
std::cout << "Test 1 Passed\n\n";
}
/**
* test function to compute eigen values of a 2x2 matrix
* \f[\begin{bmatrix}
* -4& 4& 2& 0& -3\\
* 4& -4& 4& -3& -1\\
* 2& 4& 4& 3& -3\\
* 0& -3& 3& -1&-1\\
* -3& -1& -3& -3& 0
* \end{bmatrix}\f]
* which are approximately, {9.27648, -9.26948, 2.0181, -1.03516, -5.98994}
*/
void test2() {
std::valarray<std::valarray<double>> X = {{-4, 4, 2, 0, -3},
{4, -4, 4, -3, -1},
{2, 4, 4, 3, -3},
{0, -3, 3, -1, -3},
{-3, -1, -3, -3, 0}};
double y[] = {9.27648, -9.26948, 2.0181, -1.03516,
-5.98994}; // corresponding y-values
std::cout << "------- Test 2 -------" << std::endl;
std::valarray<double> eig_vals = qr_algorithm::eigen_values(&X);
std::cout << X << "\n"
<< "Eigen values: " << eig_vals << "\n";
for (int i = 0; i < 5; i++) {
std::cout << i + 1 << "/5 Checking for " << y[i] << " --> ";
bool result = false;
for (int j = 0; j < 5 && !result; j++) {
if (std::abs(y[i] - eig_vals[j]) < 0.1) {
result = true;
std::cout << "(" << eig_vals[j] << ") ";
}
}
assert(result); // ensure that i^th expected eigen value was computed
std::cout << "found\n";
}
std::cout << "Test 2 Passed\n\n";
}
/**
* main function
*/
int main(int argc, char **argv) {
int mat_size = 5;
if (argc == 2) {
mat_size = atoi(argv[1]);
} else { // if invalid input argument is given run tests
test1();
test2();
std::cout << "Usage: ./qr_eigen_values [mat_size]\n";
return 0;
}
if (mat_size < 2) {
fprintf(stderr, "Matrix size should be > 2\n");
return -1;
}
// initialize random number generator
std::srand(std::time(nullptr));
int i, rows = mat_size, columns = mat_size;
std::valarray<std::valarray<double>> A(rows);
for (int i = 0; i < rows; i++) {
A[i] = std::valarray<double>(columns);
}
/* create a random matrix */
create_matrix(&A);
std::cout << A << "\n";
clock_t t1 = clock();
std::valarray<double> eigen_vals = qr_algorithm::eigen_values(&A);
double dtime = static_cast<double>(clock() - t1) / CLOCKS_PER_SEC;
std::cout << "Eigen vals: ";
for (i = 0; i < mat_size; i++) std::cout << eigen_vals[i] << "\t";
std::cout << "\nTime taken to compute: " << dtime << " sec\n";
return 0;
}