forked from pierluigiferrari/ssd_keras
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluation_DRBox.py
270 lines (200 loc) · 10.1 KB
/
evaluation_DRBox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
'''
Evaluate DRBox models by plotting roc curve and calculating Average Precision
For example it can be run with the following command :
python evaluation_DRBox.py -i ../data/Car/train_data/ -m trained_models/car.h5 -l ../data/Car/labelstest.csv -n 605
Copyright © 2019 THALES ALENIA SPACE FRANCE. All rights reserved
Author : Paul Pontisso
'''
import numpy as np
import matplotlib.pyplot as plt
from keras.models import load_model
from keras_loss_function.keras_drbox_loss import DRBoxLoss
from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes
from keras_layers.keras_layer_L2Normalization import L2Normalization
from drbox_encoder_decoder.drbox_output_decoder import decode_detections
from data_generator.object_detection_2d_data_generator import DataGenerator
from tqdm import tqdm
from bounding_box_utils.bounding_box_utils import iou
import warnings
import os
import argparse
# Deactivate the irrelevant warnings likely to occur
warnings.simplefilter(action='ignore', category=UserWarning)
warnings.simplefilter(action='ignore', category=np.RankWarning)
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
# Lower the verbosity of TensorFlow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Command line argument parsing
parser = argparse.ArgumentParser(description='Script to evaluate a DRBox model by calculating roc curve and average precision')
parser.add_argument('-i', '--images_folder',
type=str,
required=True,
help="Data folder to read the image and labels.")
parser.add_argument('-m', '--model_name',
type=str,
required=True,
help="Path to the h5 file containing the model")
parser.add_argument('-l', '--labels',
type =str,
default=None,
help="Whether or not to shuffle the images")
parser.add_argument('-n', '--number',
type =int,
default=600,
help="number of test example to use for the evaluation")
args = parser.parse_args()
# COMMAND LINE PARAMETERS
# ______________________________________________________________________________
images_folder = args.images_folder
labels = args.labels
model_name = args.model_name
nb_test_images = args.number
normalize_coords = True
img_height = 300 # Height of the model input images
img_width = 300 # Width of the model input images
n_classes = 1
# Set the generator for the predictions.
val_dataset = DataGenerator()
val_dataset.parse_csv(images_dir=images_folder,
labels_filename=labels,
include_classes='all')
predict_generator = val_dataset.generate(batch_size=1,
shuffle=False,
transformations=[],
label_encoder=None,
returns={'processed_images',
'original_labels'},
keep_images_without_gt=False)
val_dataset_size = val_dataset.get_dataset_size()
# number of test set images to use during evaluation
# number of bound not cut
num_objects = 0
for i in range(nb_test_images):
batch_images, batch_original_labels = next(predict_generator)
num_objects += len(batch_original_labels[0][batch_original_labels[0][:, 0] == 1])
# load model
drbox_loss = DRBoxLoss(neg_pos_ratio=3, alpha=1.0)
# Set the path to the model you want to evaluate
model_drbox = load_model(model_name, custom_objects={'L2Normalization': L2Normalization, 'AnchorBoxes': AnchorBoxes,
'compute_loss': drbox_loss.compute_loss})
# ----------------------------------------------------------------------------------------------------------------------
# Draw ROC curve by changing the confidence threshold
# ----------------------------------------------------------------------------------------------------------------------
# Predict the boxes for every image in the validation dataset befor drawing the roc curve
# so that we don't have to calculate this every time and save time
print('Predictions')
predictions = []
val_dataset = DataGenerator()
val_dataset.parse_csv(images_dir=images_folder,
labels_filename=labels,
include_classes='all')
predict_generator = val_dataset.generate(batch_size=1,
shuffle=False,
transformations=[],
label_encoder=None,
returns={'processed_images',
'original_labels'},
keep_images_without_gt=False)
for i in tqdm(range(nb_test_images)):
batch_images, batch_original_labels = next(predict_generator)
# predict boxes with the DRBox model
y_pred = model_drbox.predict(batch_images)
predictions.append(y_pred)
predictions = np.array(predictions)
# Set the different iou_threshold you want to plot the ROC curve
for iou_threshold in [0.1, 0.5]:
roc = []
precision = []
recall = []
# we evaluate the model with different confidence threshold, from 0.1 to 0.9
for conf in tqdm([x / 20.0 for x in range(2, 20)]):
false_positive = 0
false_negative = 0
true_positive = 0
val_dataset = DataGenerator()
val_dataset.parse_csv(images_dir=images_folder,
labels_filename=labels,
include_classes='all')
# Set the generator for the predictions.
predict_generator = val_dataset.generate(batch_size=1,
shuffle=False,
transformations=[],
label_encoder=None,
returns={'processed_images',
'original_labels'},
keep_images_without_gt=False)
# for every image in the validation dataset
for j in tqdm(range(nb_test_images)):
batch_images, batch_original_labels = next(predict_generator)
i = 0 # Which batch item to look at
# get sample from previously calculated predictions
y_pred = predictions[j]
# Decode the raw predictions in `y_pred`.
y_pred_decoded = decode_detections(y_pred,
confidence_thresh=conf,
iou_threshold=0.35,
top_k=100,
normalize_coords=normalize_coords,
img_height=img_height,
img_width=img_width)
# calulate the number of false positive and true positive in the image
# get the ground truth labels
gt_labels = np.copy(batch_original_labels[i])
# for every box predicted by the model
for boxp in y_pred_decoded[i]:
# if the box predicted a bond not cut
if boxp[0] == 1:
# We consider the predicted box as not matched until we can prove it is
matched = False
max_iou = 0
ind = -1
# for every ground truth box
for row, boxgt in enumerate(gt_labels):
# if the bond is not cut
if boxgt[0] == 1:
# calculate the iou between the predicted box and the ground truth box
inter_over_union = iou(boxp[2:], boxgt[1:])
# if the boxes are close enough we consider the prediction as a good prediction => a true positive
if inter_over_union > max_iou:
max_iou = inter_over_union
ind = row
# if one of the boxes is close enough we consider the prediction as a good prediction => a true positive
if max_iou > iou_threshold:
true_positive += 1
# we remove the ground truth box so that it is not matched twice
gt_labels = np.delete(gt_labels, ind, 0)
# we now consider the predicted box as matched
matched = True
# In the case the predicted box has no ground truth box with an iou over the threshold
# then we consider this box as a false positive
if not matched:
false_positive += 1
# This is a new point in the roc curve
roc.append([true_positive / num_objects, false_positive / num_objects])
precision.append(true_positive / (true_positive + false_positive))
recall.append(true_positive / num_objects)
# compute average precision
precision = np.array(precision)
recall = np.array(recall)
prec_at_rec = []
for recall_level in np.linspace(0.0, 1.0, 1000):
try:
args = np.argwhere(recall >= recall_level).flatten()
prec = max(precision[args])
except ValueError:
prec = 0.0
prec_at_rec.append(prec)
avg_prec = np.mean(prec_at_rec)
print('Average precision of model for iou of {} : {}'.format(iou_threshold, avg_prec))
roc = np.array(roc)
print(roc)
# plot the roc curve associated with one iou_threshold
plt.plot(roc[:, 1], roc[:, 0], label='iou_threshold = ' + str(iou_threshold))
plt.legend()
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.grid(color='grey', linestyle='--', linewidth=1)
plt.show()
# save figure
plt.savefig('courbe roc.jpg')