-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_optimization.py
31 lines (25 loc) · 1.13 KB
/
model_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import cv2
import tensorflow as tf
import tensorflow_model_optimization as tfmo
# Load and optimize a deep learning model using model pruning
model = tf.saved_model.load("model")
pruned_model = tfmo.sparsity.keras.prune_low_magnitude(model, pruning_schedule=tfmo.sparsity.keras.PolynomialDecay(initial_sparsity=0.50, final_sparsity=0.90, begin_step=1000, end_step=2000))
# Classify an image using the pruned model
def classify_image(image, patch_size=None):
# Prepare the input tensor
input_data = tf.constant(image, dtype=tf.float32)
# Split the input image into patches, if patch_size is specified
if patch_size is not None:
patches = cv2.split(image)
else:
patches = [image]
# Classify each patch individually
results = []
for patch in patches:
patch_data = tf.constant(patch, dtype=tf.float32)
patch_result = pruned_model(patch_data, training=False).numpy()
results.append(patch_result.tolist()[0])
# Merge the classification results for each patch into a single result
result = sum(results) / len(results)
# Return the final classification result
return result