-
-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathvideo_detection.py
132 lines (108 loc) · 5.02 KB
/
video_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import sys
import numpy as np
np.random.seed(0)
import matplotlib.pyplot as plt
import cv2
import argparse
# Root directory of the project
ROOT_DIR = os.path.abspath("../")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
from mrcnn.model import log
sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))
import coco
def apply_mask(image, mask, color, alpha=0.5):
"""apply mask to image"""
for n, c in enumerate(color):
image[:, :, n] = np.where(
mask == 1,
image[:, :, n] * (1 - alpha) + alpha * c,
image[:, :, n]
)
return image
# based on https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/visualize.py
# and https://github.com/markjay4k/Mask-RCNN-series/blob/887404d990695a7bf7f180e3ffaee939fbd9a1cf/visualize_cv.py
def display_instances(image, boxes, masks, class_ids, class_names, scores=None):
assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]
N = boxes.shape[0]
colors = colors = [tuple(255 * np.random.rand(3)) for _ in range(N)]
for i, c in enumerate(colors):
if not np.any(boxes[i]):
continue
y1, x1, y2, x2 = boxes[i]
label = class_names[class_ids[i]]
score = scores[i] if scores is not None else None
caption = "{} {:.3f}".format(label, score) if score else label
# Mask
mask = masks[:, :, i]
image = apply_mask(image, mask, c)
image = cv2.rectangle(image, (x1, y1), (x2, y2), c, 2)
image = cv2.putText(image, caption, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, c, 2)
return image
class InferenceConfig(coco.CocoConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MaskRCNN Video Object Detection/Instance Segmentation')
parser.add_argument('-v', '--video_path', type=str, default='', help='Path to video. If None camera will be used')
parser.add_argument('-sp', '--save_path', type=str, default='', help= 'Path to save the output. If None output won\'t be saved')
parser.add_argument('-s', '--show', default=True, action="store_false", help='Show output')
args = parser.parse_args()
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']
config = InferenceConfig()
# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)
if args.video_path != '':
cap = cv2.VideoCapture(args.video_path)
else:
cap = cv2.VideoCapture(0)
if args.save_path:
width = int(cap.get(3))
height = int(cap.get(4))
fps = cap.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter(args.save_path, cv2.VideoWriter_fourcc('M','J','P','G'), fps, (width, height))
while cap.isOpened():
ret, image = cap.read()
results = model.detect([image], verbose=1)
r = results[0]
image = display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'])
if args.show:
cv2.imshow('MaskRCNN Object Detection/Instance Segmentation', image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if args.save_path:
out.write(image)
cap.release()
if args.save_path:
out.release()
cv2.destroyAllWindows()