-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_predictor.py
121 lines (96 loc) · 4.54 KB
/
train_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/python
# -*- coding:utf-8 -*-
import json
import argparse
import torch
from torch.utils.data import DataLoader
import numpy as np
from models.dyMEAN.predictor import Predictor
from trainer.abs_trainer import Trainer, TrainConfig
class Dataset(torch.utils.data.Dataset):
def __init__(self, json_file) -> None:
super().__init__()
with open(json_file, 'r') as fin:
self.data = [json.loads(l) for l in fin.readlines()]
self.hidden_size = len(self.data[0]['hidden'])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
return {
'ddg': torch.tensor(item['ddg'], dtype=torch.float),
'h': torch.tensor(item['hidden'], dtype=torch.float)
}
class PredictorTrainer(Trainer):
def __init__(self, model, train_loader, valid_loader, config):
super().__init__(model, train_loader, valid_loader, config)
def get_scheduler(self, optimizer):
return None
def train_step(self, batch, batch_idx):
return self.share_step(batch, batch_idx, val=False)
def valid_step(self, batch, batch_idx):
return self.share_step(batch, batch_idx, val=True)
def share_step(self, batch, batch_idx, val):
loss = self.model(**batch)
suffix = 'Valid' if val else 'Train'
self.log(f'Loss/{suffix}', loss, batch_idx, val)
return loss
def _eval(ckpt, test_loader, device):
model = torch.load(ckpt, map_location='cpu')
model.to(device)
model.eval()
pred_ddgs, gt_ddgs = [], []
with torch.no_grad():
for batch in test_loader:
ddgs = model.inference(batch['h'].to(device))
pred_ddgs.extend(ddgs.tolist())
gt_ddgs.extend(batch['ddg'].tolist())
corr = np.corrcoef(pred_ddgs, gt_ddgs)[0][1]
print(f'correlation on test set: {corr}')
def train(args):
train_set = Dataset(args.train_set)
valid_set = Dataset(args.valid_set)
train_loader = DataLoader(train_set,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True)
valid_loader = DataLoader(valid_set,
batch_size=args.batch_size,
num_workers=args.num_workers)
model = Predictor(train_set.hidden_size, 256, 1, args.n_layers)
config = TrainConfig(args.save_dir, args.lr, args.max_epoch,
patience=args.patience,
grad_clip=args.grad_clip,
save_topk=args.save_topk)
trainer = PredictorTrainer(model, train_loader, valid_loader, config)
trainer.train([args.gpu], -1)
best_ckpt = trainer.topk_ckpt_map[0][-1]
print(f'best checkpoint: {best_ckpt}')
test_set = Dataset(args.test_set)
test_loader = DataLoader(test_set,
batch_size=args.batch_size,
num_workers=args.num_workers)
_eval(best_ckpt, test_loader, torch.device(f'cuda:{args.gpu}'))
def parse():
parser = argparse.ArgumentParser(description='training')
# data
parser.add_argument('--train_set', type=str, required=True, help='path to train set')
parser.add_argument('--valid_set', type=str, required=True, help='path to valid set')
parser.add_argument('--test_set', type=str, required=True, help='path to test set')
# training related
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--max_epoch', type=int, default=200, help='max training epoch')
parser.add_argument('--grad_clip', type=float, default=1.0, help='clip gradients with too big norm')
parser.add_argument('--save_dir', type=str, required=True, help='directory to save model and logs')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--patience', type=int, default=10, help='patience before early stopping')
parser.add_argument('--save_topk', type=int, default=10, help='save topk checkpoint. -1 for saving all ckpt that has a better validation metric than its previous epoch')
parser.add_argument('--shuffle', action='store_true', help='shuffle data')
parser.add_argument('--num_workers', type=int, default=4)
# device
parser.add_argument('--gpu', type=int, required=True, help='gpu to use, -1 for cpu')
# model
parser.add_argument('--n_layers', type=int, default=4, help='Number of layers')
return parser.parse_args()
if __name__ == '__main__':
train(parse())