-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitPSTH.m
185 lines (150 loc) · 5.59 KB
/
fitPSTH.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
function [predicted_fr, predicted_fr_each, observed, kernelInfo] = fitPSTH(spk_cat, ...
t_r, predictors_r, npredVars, sigma, lagRange, ridgeParam, snonlin)
% [predicted, observed, kernelInfo] = fitPSTH(spk_cat, ...
% predictors_r, t_r, sigma, lagRange, ridgeParam)
%
% INPUTS
% t_r: timesatmps to use for fitting and output
% predictors_r: predictor sequences sampled at t_r [nVar x times]
% sigma: temporal smoothg factor for psth
% lagRange: temporal range to obtain kernels [min max] [s]
% ridgeParam: if vector, choose the best by cross-validation (time-consuming)
%
% created from denoisePSTHvis - ok I will make it simple
% preparation of predictor variables are done outside of this function
%WARNING: snonlin=1 for static nonlinearity is not correct.
%estimation of kernel is fine (almost same to the result of Yates 2017 algorighm)
%but intercept is NOT correct
nonLinOutParam = 5;%.5;% %preprocNonLinearOut
if nargin < 7
snonlin = 0;
end
if nargin < 6
ridgeParam = [0 1e-1 1 1e2 1e3]; %10
end
normalize = 0; %if 1, apply fitting to normalized PSTH. This is necessary to prevent the dissociation of mean activity between observed and predicted
visualize =0;
omitDuration = 0;%5; %omit initial and last segments for fitting[s]
dt_r = median(diff(t_r));
%prepare PSTH
PSTH_r = getPSTH(spk_cat, t_r);
if normalize %11/1/22
PSTH_r = norm_std_mean(PSTH_r);
end
if isempty(sigma)
PSTH_f = PSTH_r;
else
PSTH_f = filtPSTH(PSTH_r, dt_r, sigma, 2);%causal
end
nanIdx = find(isnan(sum(predictors_r,1)));
PSTH_f(nanIdx) = nan;
%test 7/5/22
%PSTH_f = detrend(PSTH_f);
%% ridge regression of PSTH by behavioral signals
regIdx = intersect(find(t_r>=t_r(1)+omitDuration), find(t_r<=t_r(end)-omitDuration));
timeVec = t_r(regIdx)';
%observed = PSTH_f(regIdx) - predicted_slow(regIdx);
observed = PSTH_f(regIdx);
%static nonlinearity
%instead of applying log to predictors as in Nishimoto 2011 (compressive nonlinearity for fMRI),
%apply log to observed signals, which is equivalent to exponenential static
%nonlinearity
if snonlin==1
observed_forfit = log(nonLinOutParam + observed);
else
observed_forfit = observed;
end
%predictor = log(20 + predictors_r(:,regIdx));%worse fitting
%predictor = exp(predictors_r(:,regIdx)); %worst fitting
%predictor(isinf(predictor)) = max(predictor(~isinf(predictor)));
predictor = predictors_r(:,regIdx);
%cross-validation to determine ridgeparam
if length(ridgeParam)>1
KFolds = 5;
mse_cv = zeros(length(ridgeParam),1);
rr_cv = []; mexpval_cv = []; r0_cv=[];
for irp = 1:length(ridgeParam)
[mse_c, rr_cv(:,:,:,irp), r0_cv(irp), expval_c] = ridgeXs_cv(KFolds, timeVec, ...
predictor, observed_forfit, lagRange, ridgeParam(irp));
mse_cv(irp) = mean(mse_c);
mexpval_cv(irp) = mean(expval_c);
end
[~,thisRp] = min(mse_cv);
ridgeParam = ridgeParam(thisRp);
kernel_cv = rr_cv(:,:,:,thisRp);
kernelInfo.intercept_cv = r0_cv;
kernelInfo.kernel_cv = kernel_cv;
kernelInfo.mse_cv = mse_cv(thisRp);
kernelInfo.expval_cv = mexpval_cv(thisRp);
end
[kernel, r0, predicted] = ridgeXs(timeVec, predictor, observed_forfit, ...
lagRange, ridgeParam);
% mse = mean((observed_forfit - predicted').^2);
% expval = 100*(1 - mse / mean((observed_forfit - mean(observed_forfit)).^2));
% R = corrcoef(observed_forfit, predicted');
%% decompose model response to each filter
predicted_each = zeros(numel(npredVars), length(t_r));
for ivar = 1:numel(npredVars)
if ivar==1
theseVarIdx = 1:npredVars(1);
else
theseVarIdx = sum(npredVars(1:ivar-1))+1:sum(npredVars(1:ivar));
end
if size(lagRange,1)== 1
thisLagRange = lagRange;
else
thisLagRange = [min(lagRange(:,1)) max(lagRange(:,2))];
end
predicted_each(ivar, :) = predictXs(t_r, predictors_r(theseVarIdx,:), ...
r0, kernel(:,theseVarIdx), thisLagRange);
end
if snonlin
predicted_fr = exp(predicted);% - nonLinOutParam;%/ exp(nonLinOutParam*sum(kernel));
predicted_fr_each = exp(predicted_each);% - nonLinOutParam;
kernelInfo.kernel = kernel;
%kernelInfo.kernel = exp(kernel) - nonLinOutParam; %NG
else
predicted_fr = predicted;
predicted_fr_each = predicted;
kernelInfo.kernel = kernel;
end
mse = mean((observed - predicted_fr').^2);
expval = 100*(1 - mse / mean((observed - mean(observed)).^2));
R = corrcoef(observed, predicted_fr');
fs = 1/median(diff(single(timeVec)));
%lags = round(lagRange(1)*fs):round(lagRange(2)*fs);
lags = min(round(lagRange(:,1)*fs)):max(round(lagRange(:,2)*fs));
tlags = lags/fs;
% R=corrcoef(cat(2,observed, predicted'));
kernelInfo.intercept = r0;
kernelInfo.fs = fs;
kernelInfo.tlags = tlags;
kernelInfo.ridgeParam = ridgeParam;
kernelInfo.mse = mse;
kernelInfo.expval = expval;
kernelInfo.corrcoef = R(1,2);
if visualize
% figure;
% %% figure kernels
% plot(tlags, squeeze(kernel_cv), 'color', [.5 .5 .5]);
% hold on;
% plot(tlags, kernel, 'k','linewidth',2);
% grid on;
% title(['corr coef observed vs predicted by position(x) ' num2str(R(1,2))]);
% xlabel('delay [s]');
% grid on;
% marginplots;
%screen2png(['Kernels_filterSigma' num2str(sigma) 'ms']);
%% figure traces over time
figure('position',[0 0 1900 1400]);
ax3(1)=subplot(211); plot(t_r, predictors_r);
ylabel('signal');grid on;
ax3(2)=subplot(212); plot(timeVec, observed, timeVec, predicted_fr);
grid on;
legend('observed PSTH (filtered)', ['fitted']);
ylabel('psth');xlabel('time [s]');
axis tight;
linkaxes(ax3(:), 'x');
%screen2png(['tcourse_resampleSigma' num2str(sigma) 'ms']);
end
end