-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbenchmarks.py
243 lines (204 loc) · 8.58 KB
/
benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# Author: David J. Elkind
# Creation date: 2018-03-07 (year-month-day)
"""
Benchmarking of optimization functions
"""
import argparse
import time
import numpy as np
import seidhr.common as common
from seidhr.lipo import AdaLIPO
from seidhr.optimization_test_functions import function_info
P_EXPLORE_LOW = 0.025
P_EXPLORE_HIGH = 0.975
class OptimizerBenchmark:
def __init__(self,
dict_of_test_fns,
dict_of_optimizers,
target_value="percentile_5",
n_experiments=256,
max_objective_fn_calls=100,
monte_carlo_size=10000,
random_pr_explore=False,
verbose=False):
# validate inputs
if len(dict_of_test_fns) < 1 or len(dict_of_optimizers) < 1:
raise ValueError("supplied dictionaries must be non-empty")
if not isinstance(monte_carlo_size, int):
raise ValueError("monte_carlo_size must be positive int")
if monte_carlo_size < 1:
raise ValueError("monte_carlo_size must be positive int")
if not isinstance(max_objective_fn_calls, int):
raise ValueError("max_objective_fn_calls must be positive int")
if max_objective_fn_calls < 1:
raise ValueError("max_objective_fn_calls must be positive int")
if not isinstance(n_experiments, int):
raise ValueError("n_experiments must be positive int")
if n_experiments < 1:
raise ValueError("n_experiments must be positive int")
# store args
self._dict_of_test_fns = dict_of_test_fns
self._dict_of_optimizers = dict_of_optimizers
self._max_objective_fn_calls = max_objective_fn_calls
self._n_experiments = n_experiments
self._target_value = target_value
self._monte_carlo_size = monte_carlo_size
self._random_pr_explore = random_pr_explore
self._verbose = verbose
@property
def random_pr_explore(self):
return self._random_pr_explore
@property
def dict_of_optimizers(self):
return self._dict_of_optimizers
@property
def dict_of_test_fns(self):
return self._dict_of_test_fns
@property
def max_objective_fn_calls(self):
return self._max_objective_fn_calls
@property
def monte_carlo_size(self):
return self._monte_carlo_size
@property
def n_experiments(self):
return self._n_experiments
@property
def target_value(self):
return self._target_value
@property
def verbose(self):
return self._verbose
def get_target_y(self, objective_function_name):
y_target = self.dict_of_test_fns[objective_function_name][self.target_value]
return float(y_target)
def get_init_data(self, objective_function_name, size):
active_fn = self.dict_of_test_fns[objective_function_name]
prs = common.PureRandomSearch(**active_fn, initialization_data=size)
y_target = self.get_target_y(objective_function_name=objective_function_name)
if self.verbose:
msg = "This is the target value: %.2f; the algorithm is initialized with %d (x, f(x)) tuples." % (y_target, size)
print(msg)
init_data = {
"x": prs.x,
"y": prs.y
}
return y_target, init_data
def single_test(self, initial_data, objective_function_name, optimizer_name):
active_fn = self.dict_of_test_fns[objective_function_name]
x_star = active_fn["argmin"]
y_target, init_xy = initial_data
if self.random_pr_explore:
pr_explore = np.random.uniform(low=P_EXPLORE_LOW, high=P_EXPLORE_HIGH, size=1)[0]
else:
pr_explore = 0.5
optim = self.dict_of_optimizers[optimizer_name](**active_fn,
pr_explore=pr_explore,
initialization_data=init_xy,
verbose=self.verbose)
x_best, y_best, n_objective_calls = optim.fit_benchmark(target=y_target,
max_obj_fn_evals=self.max_objective_fn_calls)
x_star_norm = np.linalg.norm(x_star - x_best, 2)
n_objective_calls = optim.y.size
return x_star_norm, y_best, n_objective_calls, pr_explore
def test_all(self):
results = dict()
for fn_name in self.dict_of_test_fns.keys():
fn_results = results.get(fn_name, dict())
for optim_name in self.dict_of_optimizers.keys():
if self.verbose:
print(optim_name)
optim_results = fn_results.get(optim_name, dict())
for _ in range(self.n_experiments):
initial_data = self.get_init_data(objective_function_name=fn_name, size=1)
x_star_norm, y_best, n_objective_calls, pr_explore = self.single_test(objective_function_name=fn_name,
optimizer_name=optim_name,
initial_data=initial_data)
n_elements = 4
old_row = optim_results.get("result_array", np.zeros((0, n_elements)))
new_row = np.array([pr_explore, n_objective_calls, x_star_norm, y_best]).reshape((1, n_elements))
all_row = np.vstack((old_row, new_row))
optim_results.update({"result_array": all_row})
print("%d objective calls" % n_objective_calls)
fn_results.update({optim_name: optim_results})
results.update({fn_name: fn_results})
return results
class Range(object):
def __init__(self, start, end):
self.start = start
self.end = end
def __eq__(self, other):
return self.start <= other <= self.end
def parse_args():
"""Parses arguments"""
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--function_name", type=str, default="goldstein_price", required=True,
choices=["goldstein_price",
"branin",
"gramacy_lee",
"modified_branin",
"bukin_6",
"sphere",
"camel_hump_6",
"hartmann_6",
"forrester",
"colville",
"holder_table",
"rosenbrock"],
help="string naming which optimization test function to use")
parser.add_argument("-n", "--n_experiments",
type=int,
default=128,
help="How many times to run each optimizer for each objective function")
parser.add_argument("-p", "--percentile",
type=float,
default=5.0,
choices=[Range(0.0, 50.0)],
help="the target quantile of the objective function; capped at 50.0.")
args_out = parser.parse_args()
return args_out
def subset_fns(list_of_str):
out = dict()
for fn_name in list_of_str:
out.update({fn_name: function_info[fn_name]})
return out
def flatten_dict(nested_dict):
out = ["obj_fn\toptimizer\tpr_explore\tn_obj_fn_calls\tx_star_norm\ty_best\n"]
for k1, v1 in nested_dict.items():
for k2, v2 in v1.items():
row = "%s\t%s\t" % (k1, k2)
for v3 in v2.values():
for v in v3:
row_data = "\t".join("%.6f" % fl for fl in v.tolist())
new_row = row + row_data + "\n"
out.append(new_row)
return out
if __name__ == "__main__":
start = time.time()
args = parse_args()
dict_of_optim = {
"PRS": common.PureRandomSearch,
# "AdaLIPO": RandomAdaLIPO,
"AdaLIPO": AdaLIPO
}
dict_of_fn = subset_fns([args.function_name])
prs_sample_size = common.pure_random_search_sample_size(q=1.0 - args.percentile / 100.0)
max_obj_fn_calls = 4 * prs_sample_size
print("This is the maximum number of objective function calls for each experiment: %d" % max_obj_fn_calls)
bench = OptimizerBenchmark(dict_of_optimizers=dict_of_optim,
dict_of_test_fns=dict_of_fn,
n_experiments=args.n_experiments,
max_objective_fn_calls=max_obj_fn_calls,
verbose=False)
benchmark_results = bench.test_all()
flattened_results = flatten_dict(benchmark_results)
for item in flattened_results:
print(item)
# with open("%s_n=%d_results.json" % (args.function_name, args.n_experiments), "w") as out_file:
# json.dump(obj=benchmark_results, fp=out_file)
with open("%s_n=%d_results_random_pr_explore.tsv" % (args.function_name, args.n_experiments), "w") as out_file:
out_file.writelines(flattened_results)
stop = time.time()
print("Elapsed time: %.2f hours" % ((stop - start) / 60 / 60))