-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject1_model.py
65 lines (57 loc) · 2.2 KB
/
project1_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock_res(nn.Module):
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock_res, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes)
)
def forward(self, x):
# Forming F
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
#Adding skip connection
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, P, N, C1, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
stride = [1, 2, 2, 2]
C = C1
self.in_planes = C
self.N = N
self.P = P
self.conv1 = nn.Conv2d(3, C, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(C)
self.layers1 = nn.ModuleList()
for i in range(0,N):
if i>0:
C = 2*C
self.layers1.append(self._make_layer(block, C, num_blocks[i], stride[i]))
self.linear = nn.Linear(C, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
for i in range(0,self.N):
out = self.layers1[i](out)
out = F.avg_pool2d(out, self.P)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def project1_model():
return ResNet(4, 4, 40, BasicBlock_res, [5,4,2,2])