-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
358 lines (283 loc) · 14.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import torch
import numpy as np
import logging
import copy
import sys
from PIL import ImageFilter
import random
from torchvision.utils import make_grid
# import matplotlib.pyplot as plt
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
def setup_logger(name, log_file, level=logging.INFO, console_out = True):
"""To setup as many loggers as you want"""
handler = logging.FileHandler(log_file, mode='a')
handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
while logger.hasHandlers():
logger.removeHandler(logger.handlers[0])
logger.addHandler(handler)
if console_out:
stdout_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stdout_handler)
return logger
def average_weights(w, pool = None):
"""
Returns the average of the weights.
"""
w_avg = copy.deepcopy(w[0].state_dict())
for key in w_avg.keys():
if pool is None:
for i in range(1, len(w)):
w_avg[key] += w[i].state_dict()[key]
w_avg[key] = torch.true_divide(w_avg[key], len(w))
else:
for i in range(1, len(pool)):
w_avg[key] += w[pool[i]].state_dict()[key]
w_avg[key] = torch.true_divide(w_avg[key], len(pool))
return w_avg
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class DatasetSplit(torch.utils.data.Dataset):
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = list(idxs)
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
images, labels = self.dataset[self.idxs[item]]
return images, labels
def get_multiclient_trainloader_list(training_data, num_client, shuffle, num_workers, batch_size, noniid_ratio = 1.0, num_class = 10, hetero = False, hetero_string = "0.2_0.8|16|0.8_0.2"):
#mearning of default hetero_string = "C_D|B" - dividing clients into two groups, stronger group: C clients has D of the data (batch size = B); weaker group: the other (1-C) clients have (1-D) of the data (batch size = 1).
if num_client == 1:
training_loader_list = [torch.utils.data.DataLoader(training_data, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers)]
elif num_client > 1:
if noniid_ratio < 1.0:
training_subset_list = noniid_alllabel(training_data, num_client, noniid_ratio, num_class, hetero, hetero_string) # TODO: implement non_iid_hetero version.
training_loader_list = []
if hetero:
rich_data_ratio = float(hetero_string.split("|")[-1].split("_")[0])
rich_data_volume = int(rich_data_ratio * len(training_data))
rich_client_ratio = float(hetero_string.split("|")[0].split("_")[0])
rich_client = int(rich_client_ratio * num_client)
for i in range(num_client):
# print(f"client {i}:")
if noniid_ratio == 1.0:
if not hetero:
training_subset = torch.utils.data.Subset(training_data, list(range(i * (len(training_data)//num_client), (i+1) * (len(training_data)//num_client))))
else:
if i < rich_client:
training_subset = torch.utils.data.Subset(training_data, list(range(i * (rich_data_volume//rich_client), (i+1) * (rich_data_volume//rich_client))))
elif i >= rich_client:
heteor_list = list(range(rich_data_volume + (i - rich_client) * (len(training_data) - rich_data_volume) // (num_client - rich_client), rich_data_volume + (i - rich_client + 1) * (len(training_data) - rich_data_volume) // (num_client - rich_client)))
training_subset = torch.utils.data.Subset(training_data, heteor_list)
else:
training_subset = DatasetSplit(training_data, training_subset_list[i])
# print(len(training_subset))
if not hetero:
if num_workers > 0:
subset_training_loader = torch.utils.data.DataLoader(
training_subset, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size, persistent_workers = True)
else:
subset_training_loader = torch.utils.data.DataLoader(
training_subset, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size, persistent_workers = False)
else:
if i < rich_client:
real_batch_size = batch_size * int(hetero_string.split("|")[1])
elif i >= rich_client:
real_batch_size = batch_size
if num_workers > 0:
subset_training_loader = torch.utils.data.DataLoader(
training_subset, shuffle=shuffle, num_workers=num_workers, batch_size=real_batch_size, persistent_workers = True)
else:
subset_training_loader = torch.utils.data.DataLoader(
training_subset, shuffle=shuffle, num_workers=num_workers, batch_size=real_batch_size, persistent_workers = False)
# print(f"batch size is {real_batch_size}")
training_loader_list.append(subset_training_loader)
return training_loader_list
class Subset(torch.utils.data.Dataset):
r"""
Subset of a dataset at specified indices.
Args:
dataset (Dataset): The whole Dataset
indices (sequence): Indices in the whole set selected for subset
"""
def __init__(self, dataset, indices) -> None:
self.dataset = dataset
self.indices = indices
def __getitem__(self, idx):
if isinstance(idx, list):
return self.dataset[[self.indices[i] for i in idx]]
return self.dataset[self.indices[idx]]
def __len__(self):
return len(self.indices)
def noniid_unlabel(dataset, num_users, label_rate, noniid_ratio = 0.2, num_class = 10):
num_class_per_client = int(noniid_ratio * num_class)
num_shards, num_imgs = num_class_per_client * num_users, int(len(dataset)/num_users/num_class_per_client)
idx_shard = [i for i in range(num_shards)]
dict_users_unlabeled = {i: np.array([], dtype='int64') for i in range(num_users)}
idxs = np.arange(len(dataset))
labels = np.arange(len(dataset))
for i in range(len(dataset)):
labels[i] = dataset[i][1]
dict_users_labeled = set()
# sort labels
idxs_labels = np.vstack((idxs, labels))
idxs_labels = idxs_labels[:,idxs_labels[1,:].argsort()]
idxs = idxs_labels[0,:]
# divide and assign
for i in range(num_users):
rand_set = set(np.random.choice(idx_shard, num_class_per_client, replace=False))
idx_shard = list(set(idx_shard) - rand_set)
for rand in rand_set:
dict_users_unlabeled[i] = np.concatenate((dict_users_unlabeled[i], idxs[rand*num_imgs:(rand+1)*num_imgs]), axis=0)
dict_users_labeled = set(np.random.choice(list(idxs), int(len(idxs) * label_rate), replace=False))
for i in range(num_users):
dict_users_unlabeled[i] = set(dict_users_unlabeled[i])
dict_users_unlabeled[i] = dict_users_unlabeled[i] - dict_users_labeled
return dict_users_labeled, dict_users_unlabeled
# def visualize_classification(loader_iter, labelMap = None, nrofItems = 16, pad = 4, save_name = "unknown"):
# #Iterate through the data loader
# imgTensor, labels = next(loader_iter)
# # Generate image grid
# grid = make_grid(imgTensor[:nrofItems], padding = pad, nrow=nrofItems)
# # Permute the axis as numpy expects image of shape (H x W x C)
# grid = grid.permute(1, 2, 0)
# # Get Labels
# if labelMap is not None:
# labels = [labelMap[lbl.item()] for lbl in labels[:nrofItems]]
# else:
# labels = [f"unknown" for lbl in labels[:nrofItems]]
# # Set up plot config
# plt.figure(figsize=(8, 2), dpi=300)
# plt.axis('off')
# # Plot Image Grid
# plt.imshow(grid)
# # Plot the image titles
# fact = 1 + (nrofItems)/100
# rng = np.linspace(1/(fact*nrofItems), 1 - 1/(fact*nrofItems) , num = nrofItems)
# for idx, val in enumerate(rng):
# plt.figtext(val, 0.85, labels[idx], fontsize=8)
# # Show the plot
# # plt.show()
# plt.savefig(f"visual{save_name}.png")
class GaussianBlur(object):
"""Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, x):
sigma = random.uniform(self.sigma[0], self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
return x
def divergence_plot(path_to_log, freq = 1):
file1 = open(path_to_log, 'r')
Lines = file1.readlines()
count = 0
divergence_mean_list = []
divergence_std_list = []
# Strips the newline character
divergence_mean = 0
divergence_std = 0
for line in Lines:
if "divergence mean:" in line:
count += 1
divergence_mean += float(line.split("divergence mean: ")[-1].split(", std:")[0])
divergence_std += float(line.split(", std: ")[-1].split(" and detailed_list:")[0])
if count % freq == 0:
divergence_mean_list.append(divergence_mean/freq)
divergence_std_list.append(divergence_std/freq)
divergence_mean = 0
divergence_std = 0
count = 0
return divergence_mean_list, divergence_std_list
def noniid_alllabel(dataset, num_users, noniid_ratio = 0.2, num_class = 10, hetero = False, hetero_string = "0.2_0.8|16|0.8_0.2"):
num_class_per_client = int(noniid_ratio * num_class)
# 500 clients -> *5 = 2500 clients.
if hetero:
num_shards_multiplier = float(hetero_string.split("|")[-1].split("_")[-1]) # 0.2 (last float)
num_shards = int(num_class_per_client * num_users / num_shards_multiplier) # more shards (equivalent to more clients)
num_imgs = int(len(dataset)/num_users/num_class_per_client * num_shards_multiplier) # less image
rich_client_ratio = float(hetero_string.split("|")[0].split("_")[0]) # 0.2 (first float)
rich_client = int(rich_client_ratio * num_users) # 100 clients
rich_client_gets_shards = int((1-num_shards_multiplier)/num_shards_multiplier) # each get 4 shards
else:
num_shards, num_imgs = num_class_per_client * num_users, int(len(dataset)/num_users/num_class_per_client)
# print(f"num_shards: {num_shards}, num_imgs: {num_imgs}")
idx_shard = [i for i in range(num_shards)]
dict_users_labeled = {i: np.array([], dtype='int64') for i in range(num_users)}
idxs = np.arange(len(dataset))
labels = np.arange(len(dataset))
for i in range(len(dataset)):
if dataset.__class__.__name__ == "Subset":
labels[i] = dataset.dataset.targets[dataset.indices[i]] #dataset must be a subset
else:
labels[i] = dataset[i][1]
# sort labels
idxs_labels = np.vstack((idxs, labels))
idxs_labels = idxs_labels[:,idxs_labels[1,:].argsort()]
idxs = idxs_labels[0,:]
# divide and assign
if not hetero:
for i in range(num_users):
rand_set = set(np.random.choice(idx_shard, num_class_per_client, replace=False))
idx_shard = list(set(idx_shard) - rand_set)
for rand in rand_set:
dict_users_labeled[i] = np.concatenate((dict_users_labeled[i], idxs[rand*num_imgs:(rand+1)*num_imgs]), axis=0)
else:
virtual_num_user = rich_client * rich_client_gets_shards + num_users - rich_client
for i in range(virtual_num_user):
rand_set = set(np.random.choice(idx_shard, num_class_per_client, replace=False))
idx_shard = list(set(idx_shard) - rand_set)
if i < rich_client * rich_client_gets_shards: # assign shards for rich clients
for rand in rand_set:
dict_users_labeled[i // rich_client_gets_shards] = np.concatenate((dict_users_labeled[i // rich_client_gets_shards], idxs[rand*num_imgs:(rand+1)*num_imgs]), axis=0)
else:
for rand in rand_set:
dict_users_labeled[(i - rich_client * rich_client_gets_shards) + rich_client] = np.concatenate((dict_users_labeled[(i - rich_client * rich_client_gets_shards) + rich_client], idxs[rand*num_imgs:(rand+1)*num_imgs]), axis=0)
for i in range(num_users):
# print(f"user {i} has {len(dict_users_labeled[i])} images")
dict_users_labeled[i] = set(dict_users_labeled[i])
return dict_users_labeled
if __name__ == '__main__':
#avgfreq
avg_freq = 1
cutlayer = 3
file_name = f'mocosflV2_ResNet18_cifar10_cut{cutlayer}_bnlNone_client5_nonIID0.2_avg_freq_{avg_freq}'
# file_name = f'mocosflV2_ResNet18_cifar10_cut{cutlayer}_bnlNone_client5_nonIID0.2'
path_to_log = f'outputs/divergence/{file_name}/output.log'
file_name = 'mocofl_ResNet18-cifar10_crosssilo_batchsize128_nonIID0.2_client5_subsample_1.0_local_epoch_5'
path_to_log = f'outputs/{file_name}/output.log'
divergence_mean_list, divergence_std_list = divergence_plot(path_to_log, avg_freq)
print(divergence_mean_list)
#cutlayer
# avg_freq = 1
# cutlayer = 4
# file_name = f'mocosflV2_ResNet18_cifar10_cut{cutlayer}_bnlNone_client5_nonIID0.2'
# path_to_log = f'outputs/divergence/{file_name}/output.log'
# divergence_mean_list, divergence_std_list = divergence_plot(path_to_log, avg_freq)
# print(divergence_mean_list)