forked from binary-husky/gpt_academic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_language.py
527 lines (458 loc) · 22.3 KB
/
multi_language.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
"""
Translate this project to other languages (experimental, please open an issue if there is any bug)
Usage:
1. modify config.py, set your LLM_MODEL and API_KEY(s) to provide access to OPENAI (or any other LLM model provider)
2. modify LANG (below ↓)
LANG = "English"
3. modify TransPrompt (below ↓)
TransPrompt = f"Replace each json value `#` with translated results in English, e.g., \"原始文本\":\"TranslatedText\". Keep Json format. Do not answer #."
4. Run `python multi_language.py`.
Note: You need to run it multiple times to increase translation coverage because GPT makes mistakes sometimes.
(You can also run `CACHE_ONLY=True python multi_language.py` to use cached translation mapping)
5. Find the translated program in `multi-language\English\*`
P.S.
- The translation mapping will be stored in `docs/translation_xxxx.json`, you can revised mistaken translation there.
- If you would like to share your `docs/translation_xxxx.json`, (so that everyone can use the cached & revised translation mapping), please open a Pull Request
- If there is any translation error in `docs/translation_xxxx.json`, please open a Pull Request
- Welcome any Pull Request, regardless of language
"""
import os
import json
import functools
import re
import pickle
import time
from toolbox import get_conf
CACHE_ONLY = os.environ.get('CACHE_ONLY', False)
CACHE_FOLDER = get_conf('PATH_LOGGING')
blacklist = ['multi-language', CACHE_FOLDER, '.git', 'private_upload', 'multi_language.py', 'build', '.github', '.vscode', '__pycache__', 'venv']
# LANG = "TraditionalChinese"
# TransPrompt = f"Replace each json value `#` with translated results in Traditional Chinese, e.g., \"原始文本\":\"翻譯後文字\". Keep Json format. Do not answer #."
# LANG = "Japanese"
# TransPrompt = f"Replace each json value `#` with translated results in Japanese, e.g., \"原始文本\":\"テキストの翻訳\". Keep Json format. Do not answer #."
LANG = "English"
TransPrompt = f"Replace each json value `#` with translated results in English, e.g., \"原始文本\":\"TranslatedText\". Keep Json format. Do not answer #."
if not os.path.exists(CACHE_FOLDER):
os.makedirs(CACHE_FOLDER)
def lru_file_cache(maxsize=128, ttl=None, filename=None):
"""
Decorator that caches a function's return value after being called with given arguments.
It uses a Least Recently Used (LRU) cache strategy to limit the size of the cache.
maxsize: Maximum size of the cache. Defaults to 128.
ttl: Time-to-Live of the cache. If a value hasn't been accessed for `ttl` seconds, it will be evicted from the cache.
filename: Name of the file to store the cache in. If not supplied, the function name + ".cache" will be used.
"""
cache_path = os.path.join(CACHE_FOLDER, f"{filename}.cache") if filename is not None else None
def decorator_function(func):
cache = {}
_cache_info = {
"hits": 0,
"misses": 0,
"maxsize": maxsize,
"currsize": 0,
"ttl": ttl,
"filename": cache_path,
}
@functools.wraps(func)
def wrapper_function(*args, **kwargs):
key = str((args, frozenset(kwargs)))
if key in cache:
if _cache_info["ttl"] is None or (cache[key][1] + _cache_info["ttl"]) >= time.time():
_cache_info["hits"] += 1
print(f'Warning, reading cache, last read {(time.time()-cache[key][1])//60} minutes ago'); time.sleep(2)
cache[key][1] = time.time()
return cache[key][0]
else:
del cache[key]
result = func(*args, **kwargs)
cache[key] = [result, time.time()]
_cache_info["misses"] += 1
_cache_info["currsize"] += 1
if _cache_info["currsize"] > _cache_info["maxsize"]:
oldest_key = None
for k in cache:
if oldest_key is None:
oldest_key = k
elif cache[k][1] < cache[oldest_key][1]:
oldest_key = k
del cache[oldest_key]
_cache_info["currsize"] -= 1
if cache_path is not None:
with open(cache_path, "wb") as f:
pickle.dump(cache, f)
return result
def cache_info():
return _cache_info
wrapper_function.cache_info = cache_info
if cache_path is not None and os.path.exists(cache_path):
with open(cache_path, "rb") as f:
cache = pickle.load(f)
_cache_info["currsize"] = len(cache)
return wrapper_function
return decorator_function
def contains_chinese(string):
"""
Returns True if the given string contains Chinese characters, False otherwise.
"""
chinese_regex = re.compile(u'[\u4e00-\u9fff]+')
return chinese_regex.search(string) is not None
def split_list(lst, n_each_req):
"""
Split a list into smaller lists, each with a maximum number of elements.
:param lst: the list to split
:param n_each_req: the maximum number of elements in each sub-list
:return: a list of sub-lists
"""
result = []
for i in range(0, len(lst), n_each_req):
result.append(lst[i:i + n_each_req])
return result
def map_to_json(map, language):
dict_ = read_map_from_json(language)
dict_.update(map)
with open(f'docs/translate_{language.lower()}.json', 'w', encoding='utf8') as f:
json.dump(dict_, f, indent=4, ensure_ascii=False)
def read_map_from_json(language):
if os.path.exists(f'docs/translate_{language.lower()}.json'):
with open(f'docs/translate_{language.lower()}.json', 'r', encoding='utf8') as f:
res = json.load(f)
res = {k:v for k, v in res.items() if v is not None and contains_chinese(k)}
return res
return {}
def advanced_split(splitted_string, spliter, include_spliter=False):
splitted_string_tmp = []
for string_ in splitted_string:
if spliter in string_:
splitted = string_.split(spliter)
for i, s in enumerate(splitted):
if include_spliter:
if i != len(splitted)-1:
splitted[i] += spliter
splitted[i] = splitted[i].strip()
for i in reversed(range(len(splitted))):
if not contains_chinese(splitted[i]):
splitted.pop(i)
splitted_string_tmp.extend(splitted)
else:
splitted_string_tmp.append(string_)
splitted_string = splitted_string_tmp
return splitted_string_tmp
cached_translation = {}
cached_translation = read_map_from_json(language=LANG)
def trans(word_to_translate, language, special=False):
if len(word_to_translate) == 0: return {}
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from toolbox import get_conf, ChatBotWithCookies
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
llm_kwargs = {
'api_key': API_KEY,
'llm_model': LLM_MODEL,
'top_p':1.0,
'max_length': None,
'temperature':0.4,
}
import random
N_EACH_REQ = random.randint(16, 32)
word_to_translate_split = split_list(word_to_translate, N_EACH_REQ)
inputs_array = [str(s) for s in word_to_translate_split]
inputs_show_user_array = inputs_array
history_array = [[] for _ in inputs_array]
if special: # to English using CamelCase Naming Convention
sys_prompt_array = [f"Translate following names to English with CamelCase naming convention. Keep original format" for _ in inputs_array]
else:
sys_prompt_array = [f"Translate following sentences to {LANG}. E.g., You should translate sentences to the following format ['translation of sentence 1', 'translation of sentence 2']. Do NOT answer with Chinese!" for _ in inputs_array]
chatbot = ChatBotWithCookies(llm_kwargs)
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array,
inputs_show_user_array,
llm_kwargs,
chatbot,
history_array,
sys_prompt_array,
)
while True:
try:
gpt_say = next(gpt_say_generator)
print(gpt_say[1][0][1])
except StopIteration as e:
result = e.value
break
translated_result = {}
for i, r in enumerate(result):
if i%2 == 1:
try:
res_before_trans = eval(result[i-1])
res_after_trans = eval(result[i])
if len(res_before_trans) != len(res_after_trans):
raise RuntimeError
for a,b in zip(res_before_trans, res_after_trans):
translated_result[a] = b
except:
# try:
# res_before_trans = word_to_translate_split[(i-1)//2]
# res_after_trans = [s for s in result[i].split("', '")]
# for a,b in zip(res_before_trans, res_after_trans):
# translated_result[a] = b
# except:
print('GPT answers with unexpected format, some words may not be translated, but you can try again later to increase translation coverage.')
res_before_trans = eval(result[i-1])
for a in res_before_trans:
translated_result[a] = None
return translated_result
def trans_json(word_to_translate, language, special=False):
if len(word_to_translate) == 0: return {}
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from toolbox import get_conf, ChatBotWithCookies
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
llm_kwargs = {
'api_key': API_KEY,
'llm_model': LLM_MODEL,
'top_p':1.0,
'max_length': None,
'temperature':0.1,
}
import random
N_EACH_REQ = random.randint(16, 32)
random.shuffle(word_to_translate)
word_to_translate_split = split_list(word_to_translate, N_EACH_REQ)
inputs_array = [{k:"#" for k in s} for s in word_to_translate_split]
inputs_array = [ json.dumps(i, ensure_ascii=False) for i in inputs_array]
inputs_show_user_array = inputs_array
history_array = [[] for _ in inputs_array]
sys_prompt_array = [TransPrompt for _ in inputs_array]
chatbot = ChatBotWithCookies(llm_kwargs)
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array,
inputs_show_user_array,
llm_kwargs,
chatbot,
history_array,
sys_prompt_array,
)
while True:
try:
gpt_say = next(gpt_say_generator)
print(gpt_say[1][0][1])
except StopIteration as e:
result = e.value
break
translated_result = {}
for i, r in enumerate(result):
if i%2 == 1:
try:
translated_result.update(json.loads(result[i]))
except:
print(result[i])
print(result)
return translated_result
def step_1_core_key_translate():
LANG_STD = 'std'
def extract_chinese_characters(file_path):
syntax = []
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
import ast
root = ast.parse(content)
for node in ast.walk(root):
if isinstance(node, ast.Name):
if contains_chinese(node.id): syntax.append(node.id)
if isinstance(node, ast.Import):
for n in node.names:
if contains_chinese(n.name): syntax.append(n.name)
elif isinstance(node, ast.ImportFrom):
for n in node.names:
if contains_chinese(n.name): syntax.append(n.name)
# if node.module is None: print(node.module)
for k in node.module.split('.'):
if contains_chinese(k): syntax.append(k)
return syntax
def extract_chinese_characters_from_directory(directory_path):
chinese_characters = []
for root, dirs, files in os.walk(directory_path):
if any([b in root for b in blacklist]):
continue
print(files)
for file in files:
if file.endswith('.py'):
file_path = os.path.join(root, file)
chinese_characters.extend(extract_chinese_characters(file_path))
return chinese_characters
directory_path = './'
chinese_core_names = extract_chinese_characters_from_directory(directory_path)
chinese_core_keys = [name for name in chinese_core_names]
chinese_core_keys_norepeat = []
for d in chinese_core_keys:
if d not in chinese_core_keys_norepeat: chinese_core_keys_norepeat.append(d)
need_translate = []
cached_translation = read_map_from_json(language=LANG_STD)
cached_translation_keys = list(cached_translation.keys())
for d in chinese_core_keys_norepeat:
if d not in cached_translation_keys:
need_translate.append(d)
if CACHE_ONLY:
need_translate_mapping = {}
else:
need_translate_mapping = trans(need_translate, language=LANG_STD, special=True)
map_to_json(need_translate_mapping, language=LANG_STD)
cached_translation = read_map_from_json(language=LANG_STD)
cached_translation = dict(sorted(cached_translation.items(), key=lambda x: -len(x[0])))
chinese_core_keys_norepeat_mapping = {}
for k in chinese_core_keys_norepeat:
chinese_core_keys_norepeat_mapping.update({k:cached_translation[k]})
chinese_core_keys_norepeat_mapping = dict(sorted(chinese_core_keys_norepeat_mapping.items(), key=lambda x: -len(x[0])))
# ===============================================
# copy
# ===============================================
def copy_source_code():
from toolbox import get_conf
import shutil
import os
try: shutil.rmtree(f'./multi-language/{LANG}/')
except: pass
os.makedirs(f'./multi-language', exist_ok=True)
backup_dir = f'./multi-language/{LANG}/'
shutil.copytree('./', backup_dir, ignore=lambda x, y: blacklist)
copy_source_code()
# ===============================================
# primary key replace
# ===============================================
directory_path = f'./multi-language/{LANG}/'
for root, dirs, files in os.walk(directory_path):
for file in files:
if file.endswith('.py'):
file_path = os.path.join(root, file)
syntax = []
# read again
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
for k, v in chinese_core_keys_norepeat_mapping.items():
content = content.replace(k, v)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
def step_2_core_key_translate():
# =================================================================================================
# step2
# =================================================================================================
def load_string(strings, string_input):
string_ = string_input.strip().strip(',').strip().strip('.').strip()
if string_.startswith('[Local Message]'):
string_ = string_.replace('[Local Message]', '')
string_ = string_.strip().strip(',').strip().strip('.').strip()
splitted_string = [string_]
# --------------------------------------
splitted_string = advanced_split(splitted_string, spliter=",", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="。", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter=")", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="(", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="(", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter=")", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="<", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter=">", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="[", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="]", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="【", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="】", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="?", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter=":", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter=":", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter=",", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="#", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="\n", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter=";", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="`", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter=" ", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="- ", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="---", include_spliter=False)
# --------------------------------------
for j, s in enumerate(splitted_string): # .com
if '.com' in s: continue
if '\'' in s: continue
if '\"' in s: continue
strings.append([s,0])
def get_strings(node):
strings = []
# recursively traverse the AST
for child in ast.iter_child_nodes(node):
node = child
if isinstance(child, ast.Str):
if contains_chinese(child.s):
load_string(strings=strings, string_input=child.s)
elif isinstance(child, ast.AST):
strings.extend(get_strings(child))
return strings
string_literals = []
directory_path = f'./multi-language/{LANG}/'
for root, dirs, files in os.walk(directory_path):
for file in files:
if file.endswith('.py'):
file_path = os.path.join(root, file)
syntax = []
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# comments
comments_arr = []
for code_sp in content.splitlines():
comments = re.findall(r'#.*$', code_sp)
for comment in comments:
load_string(strings=comments_arr, string_input=comment)
string_literals.extend(comments_arr)
# strings
import ast
tree = ast.parse(content)
res = get_strings(tree, )
string_literals.extend(res)
[print(s) for s in string_literals]
chinese_literal_names = []
chinese_literal_names_norepeat = []
for string, offset in string_literals:
chinese_literal_names.append(string)
chinese_literal_names_norepeat = []
for d in chinese_literal_names:
if d not in chinese_literal_names_norepeat: chinese_literal_names_norepeat.append(d)
need_translate = []
cached_translation = read_map_from_json(language=LANG)
cached_translation_keys = list(cached_translation.keys())
for d in chinese_literal_names_norepeat:
if d not in cached_translation_keys:
need_translate.append(d)
if CACHE_ONLY:
up = {}
else:
up = trans_json(need_translate, language=LANG, special=False)
map_to_json(up, language=LANG)
cached_translation = read_map_from_json(language=LANG)
LANG_STD = 'std'
cached_translation.update(read_map_from_json(language=LANG_STD))
cached_translation = dict(sorted(cached_translation.items(), key=lambda x: -len(x[0])))
# ===============================================
# literal key replace
# ===============================================
directory_path = f'./multi-language/{LANG}/'
for root, dirs, files in os.walk(directory_path):
for file in files:
if file.endswith('.py'):
file_path = os.path.join(root, file)
syntax = []
# read again
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
for k, v in cached_translation.items():
if v is None: continue
if '"' in v:
v = v.replace('"', "`")
if '\'' in v:
v = v.replace('\'', "`")
content = content.replace(k, v)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
if file.strip('.py') in cached_translation:
file_new = cached_translation[file.strip('.py')] + '.py'
file_path_new = os.path.join(root, file_new)
with open(file_path_new, 'w', encoding='utf-8') as f:
f.write(content)
os.remove(file_path)
step_1_core_key_translate()
step_2_core_key_translate()
print('Finished, checkout generated results at ./multi-language/')