-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsweep_finetuner.py
112 lines (91 loc) · 3.12 KB
/
sweep_finetuner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import wandb
import argparse
import yaml
import shutil
from subprocess import call
import os
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--sweep_id",
type=str,
default=None,
help="Wandb sweep id for decentralized sweeping. If not provided, a new sweep will be created.",
)
parser.add_argument(
"--gpu",
type=list,
default=None,
help="List of CUDA device ids to use for training. If not provided, all available GPUs will be used.",
)
parser.add_argument(
"--sweep_config",
type=str,
default="configs/finetuning/ft_sweep_config.yaml",
help="Path to sweep config yaml file. Ignored if sweep_id is provided.",
)
parser.add_argument(
"--project",
type=str,
default="HydraALPHA-7B",
help="Wandb project name.",
)
parser.add_argument(
"--entity",
type=str,
default="llama-moe",
help="Wandb entity name.",
)
parser.add_argument(
"--default_training_config",
type=str,
default="configs/finetuning/default_ft_config.yaml",
help="Path to default training args yaml file.",
)
return parser.parse_args()
def load_config(config_file):
with open(config_file, "r") as stream:
try:
config_dict = yaml.safe_load(stream)
return config_dict
except yaml.YAMLError as exc:
print(exc)
def finetune_sweep(args):
sweep_id = args.sweep_id
if not sweep_id:
sweep_config = yaml.safe_load(open(args.sweep_config))["wandb_args"]
sweep_id = wandb.sweep(sweep_config, project=args.project)
print("Sweep ID: ", sweep_id)
with open("sweep_id.txt", "w") as file:
file.write(sweep_id)
def run_finetune():
train_config = load_config(args.default_training_config)
wandb.init(entity=args.entity)
wandb_config = dict(wandb.config)
cluster_n = wandb_config.pop("cluster")
model_name = f"expert-{cluster_n}"
wandb.run.name = model_name
split_name = f"config{cluster_n}"
train_config["run_name"] = model_name
train_config["output_dir"] = f"experts/{model_name}"
train_config["hub_model_id"] = f"HydraLM/{model_name}"
train_config["wandb_project"] = args.project
train_config["wandb_entity"] = args.entity
train_config["wandb_run_name"] = model_name
train_config["split"] = split_name
cuda_device_declaration = (
"export CUDA_VISIBLE_DEVICES=" + ",".join([str(x) for x in args.gpu]) + "; "
if args.gpu
else ""
)
command = cuda_device_declaration + "python finetuner.py "
for key, value in train_config.items():
command += f"--{key} {value} "
print(f"Command:\n{command}")
call(command, shell=True)
if args.sweep_id is not None:
# Run the sweep
wandb.agent(sweep_id, run_finetune, project=args.project, entity=args.entity)
if __name__ == "__main__":
args = get_args()
finetune_sweep(args)