-
Notifications
You must be signed in to change notification settings - Fork 25
/
demo_line.py
executable file
·413 lines (362 loc) · 14.7 KB
/
demo_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#!/usr/bin/env python
#
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
# Unpublished Copyright (c) 2018
# Magic Leap, Inc., All Rights Reserved.
#
# NOTICE: All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law. Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY. Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure of this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
# Originating Authors: Daniel DeTone (ddetone)
# Tomasz Malisiewicz (tmalisiewicz)
# Revision author: Siyu Huang
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%
import argparse
import glob
import numpy as np
import os
import time
import cv2 as cv
from lbdmod.build import pylbd
import torch
from utils.reconstruct import TPS_line
myjet = np.array([[0. , 0. , 0.5 ],
[0. , 0. , 0.99910873],
[0. , 0.37843137, 1. ],
[0. , 0.83333333, 1. ],
[0.30044276, 1. , 0.66729918],
[0.66729918, 1. , 0.30044276],
[1. , 0.90123457, 0. ],
[1. , 0.48002905, 0. ],
[0.99910873, 0.07334786, 0. ],
[0.5 , 0. , 0. ]])
class LineTracker(object):
def __init__(self,max_num):
self.maxnum = max_num
self.point_list = []
self.desc_list = []
self.match_list = []
# self.matcher = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
self.matcher = cv.BFMatcher(cv.NORM_HAMMING)
def update(self, pts, desc):
if len(pts) < 1:
return
if len(self.point_list)>self.maxnum + 1:
self.point_list.pop()
self.desc_list.pop()
tmppts = []
for p in pts:
tmppts.append([p[0], p[1], p[2], p[3]])
self.point_list.insert(0,tmppts)
self.desc_list.insert(0,desc)
if len(self.point_list) > 1:
tmpmatches = self.matcher.knnMatch(self.desc_list[0], self.desc_list[1], k=2)
matches = [m for m, n in tmpmatches if m.distance < 20 and m.distance < n.distance * 0.7]
matches = sorted(matches, key=lambda x: x.distance)
if len(self.match_list) > self.maxnum:
self.match_list.pop()
self.match_list.insert(0,matches)
def draw_tracks(self, out, max_match):
""" Visualize tracks all overlayed on a single image.
Inputs
out - numpy uint8 image sized HxWx3 upon which tracks are overlayed.
tracks - M x (2+L) sized matrix storing track info.
"""
# Store the number of points per camera.
stroke = 1
index_last = []
# max_match = min(max_match, len(self.point_list))
for i in range(len(self.match_list)):
if i == 0:
clr2 = (255, 0, 0)
j = 0
for index in self.match_list[i]:
start = ((int(self.point_list[i][index.queryIdx][0]),int(self.point_list[i][index.queryIdx][1])))
end = ((int(self.point_list[i][index.queryIdx][2]),int(self.point_list[i][index.queryIdx][3])))
mid = (np.array(start) + np.array(end)) / 2
cv.circle(out, (int(mid[0]), int(mid[1])), stroke, clr2, -1, lineType=16)
cv.line(out, start, end, clr2, 2, lineType=16)
index_last.append(index.queryIdx)
j = j+1
if j > max_match:
break
clr = myjet[i]*255
index_next = []
j = 0
for index in self.match_list[i]:
if index.queryIdx in index_last:
start1 = ((int(self.point_list[i][index.queryIdx][0]),int(self.point_list[i][index.queryIdx][1])))
end1 = ((int(self.point_list[i][index.queryIdx][2]),int(self.point_list[i][index.queryIdx][3])))
start2 = ((int(self.point_list[i+1][index.trainIdx][0]),int(self.point_list[i+1][index.trainIdx][1])))
end2 = ((int(self.point_list[i+1][index.trainIdx][2]),int(self.point_list[i+1][index.trainIdx][3])))
p1 = (np.array(start1) + np.array(end1)) / 2
p2 = (np.array(start2) + np.array(end2)) / 2
index_next.append(index.trainIdx)
cv.line(out, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), clr, thickness=stroke, lineType=16)
j = j + 1
if j > max_match:
break
index_last = index_next
return out
class VideoStreamer(object):
""" Class to help process image streams. Three types of possible inputs:"
1.) USB Webcam.
2.) A directory of images (files in directory matching 'img_glob').
3.) A video file, such as an .mp4 or .avi file.
"""
def __init__(self, basedir, camid, skip, img_glob):
self.cap = []
self.camera = False
self.video_file = False
self.listing = []
self.i = 0
self.skip = skip
self.needsort = False
# If the "basedir" string is the word camera, then use a webcam.
if basedir == "camera/" or basedir == "camera":
print('==> Processing Webcam Input.')
self.cap = cv.VideoCapture(camid)
self.listing = range(0, self.maxlen)
self.camera = True
else:
# Try to open as a video.
self.cap = cv.VideoCapture(basedir)
lastbit = basedir[-4:len(basedir)]
if (type(self.cap) == list or not self.cap.isOpened()) and (lastbit == '.mp4'):
raise IOError('Cannot open movie file')
elif type(self.cap) != list and self.cap.isOpened() and (lastbit != '.txt'):
print('==> Processing Video Input.')
num_frames = int(self.cap.get(cv.CAP_PROP_FRAME_COUNT))
self.listing = range(0, num_frames)
self.listing = self.listing[::self.skip]
self.camera = True
self.video_file = True
self.maxlen = len(self.listing)
else:
print('==> Processing Image Directory Input.')
minname_len = 1000000
maxname_len = 0
self.index = []
search = os.path.join(basedir, img_glob)
self.listing = glob.glob(search)
for imname in self.listing:
name = imname.split('/')[-1]
if len(name) > maxname_len:
maxname_len = len(name)
if(len(name)) < minname_len:
minname_len = len(name)
if(minname_len) != maxname_len:
for imname in self.listing:
name = imname.split('/')[-1]
name = name.rjust(maxname_len, '0')
self.index.append(name)
self.needsort = True
else:
self.index = self.listing
self.ordername = np.argsort(self.index)
self.maxlen = len(self.ordername)
if self.maxlen == 0:
raise IOError('No images were found (maybe bad \'--img_glob\' parameter?)')
def read_image(self, index):
""" Read image as grayscale and resize to img_size.
Inputs
impath: Path to input image.
img_size: (W, H) tuple specifying resize size.
Returns
grayim: float32 numpy array sized H x W with values in range [0, 1].
"""
if self.needsort:
impath = self.listing[self.ordername[index]]
else:
impath = self.listing[index]
image = cv.imread(impath)
grayim = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
if grayim is None:
raise Exception('Error reading image %s' % impath)
# Image is resized via opencv.
# interp = cv.INTER_AREA
return grayim, image
def next_frame(self):
""" Return the next frame, and increment internal counter.
Returns
image: Next H x W image.
status: True or False depending whether image was loaded.
"""
if self.i == self.maxlen:
return (None, None, False)
if self.camera:
ret, image = self.cap.read()
if ret is False:
print('VideoStreamer: Cannot get image from camera (maybe bad --camid?)')
return (None,None, False)
if self.video_file:
self.cap.set(cv.CAP_PROP_POS_FRAMES, self.listing[self.i])
input_image = cv.resize(image, (self.sizer[1], self.sizer[0]),
interpolation=cv.INTER_AREA)
input_image = cv.cvtColor(input_image, cv.COLOR_RGB2GRAY)
else:
# image_file = self.listing[self.i]
input_image, image = self.read_image(self.i)
# Increment internal counter.
self.i = self.i + 1
return (input_image, image, True)
class TplsdDetect:
def __init__(self, modeluse):
from utils.utils import load_model
from modeling.TP_Net import Res160, Res320
from modeling.Hourglass import HourglassNet
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device == 'cpu':
raise EOFError('cpu version for training is not implemented.')
print('Using device: ', device)
self.head = {'center': 1, 'dis': 4, 'line': 1}
if modeluse == 'tp320':
self.model = load_model(Res320(self.head), './pretraineds/Res320.pth')
self.in_res = (320, 320)
elif modeluse == 'tplite':
self.model = load_model(Res160(self.head), './pretraineds/Res160.pth')
self.in_res = (320, 320)
elif modeluse == 'tp512':
self.model = load_model(Res320(self.head), './pretraineds/Res512.pth')
self.in_res = (512, 512)
elif modeluse == 'hg':
self.model = load_model(HourglassNet(self.head), './pretraineds/HG128.pth')
self.in_res = (512, 512)
else:
raise EOFError('Please appoint the correct model (option: tp320, tplite, tp512, hg). ')
self.model = self.model.cuda().eval()
def getlines(self, outputs, H, W, H_img, W_img):
output = outputs[-1]
lines, start_point, end_point, pos, endtime = TPS_line(output, 0.25, 0.5, H, W)
W_ = W_img / W
H_ = H_img / H
lines[:, [0, 2]] *= W_
lines[:, [1, 3]] *= H_
return lines
def detect_tplsd(self, img):
H_img, W_img = img.shape[:2]
inp = cv.resize(img, self.in_res)
H, W, C = inp.shape
hsv = cv.cvtColor(inp, cv.COLOR_BGR2HSV)
imgv0 = hsv[..., 2]
imgv = cv.resize(imgv0, (0, 0), fx=1. / 4, fy=1. / 4, interpolation=cv.INTER_LINEAR)
imgv = cv.GaussianBlur(imgv, (5, 5), 3)
imgv = cv.resize(imgv, (W, H), interpolation=cv.INTER_LINEAR)
imgv = cv.GaussianBlur(imgv, (5, 5), 3)
imgv1 = imgv0.astype(np.float32) - imgv + 127.5
imgv1 = np.clip(imgv1, 0, 255).astype(np.uint8)
hsv[..., 2] = imgv1
inp = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)
inp = (inp.astype(np.float32) / 255.)
inp = torch.from_numpy(inp.transpose(2, 0, 1)).unsqueeze(0).cuda()
with torch.no_grad():
outputs = self.model(inp)
lines = self.getlines(outputs, H, W, H_img, W_img)
return lines
if __name__ == '__main__':
# Parse command line arguments.
parser = argparse.ArgumentParser(description='Line Demo.')
parser.add_argument('input', type=str, default='',
help='Image directory or movie file or "camera" (for webcam).')
parser.add_argument('--model', type=str, default='tplite',
help='choose the pretrained model (option: tp320, tplite, tp512, hg).')
parser.add_argument('--method', type=str, default='lsd',
help='Line detection method. (option: lsd, edlines, tplsd)')
parser.add_argument('--camid', type=int, default=0,
help='OpenCV webcam video capture ID, usually 0 or 1 (default: 0).')
parser.add_argument('--img_glob', type=str, default='*.png',
help='Glob match if directory of images is specified (default: \'*.png\').')
parser.add_argument('--skip', type=int, default=1,
help='Images to skip if input is movie or directory (default: 1).')
parser.add_argument('--waitkey', type=int, default=1,
help='OpenCV waitkey time in ms (default: 1).')
opt = parser.parse_args()
print(opt)
print('==> Loading video.')
# This class helps load input images from different sources.
vs = VideoStreamer(opt.input, opt.camid, opt.skip, opt.img_glob)
print('==> Successfully loaded video.')
# This class helps merge consecutive point matches into tracks.
tracker = LineTracker(5)
print('==> Successfully loaded tracker model.')
if opt.method == 'lsd':
print('==> Detect Line Segments with LSD.')
elif opt.method == 'edlines':
print('==> Detect Line Segments with EdLines.')
elif opt.method == 'tplsd':
print('==> Detect Line Segments with TP-LSD.')
tplsd = TplsdDetect(opt.model)
else:
raise EOFError('Please specify the method of line segment detection.')
# Create a window to display the demo.
win = 'Line Tracker'
cv.namedWindow(win)
print('==> Running Demo.')
t_begin = time.time()
frame = 0
while True:
start = time.time()
img, oriimg, status = vs.next_frame() # gray
if status is False:
break
# Get points and descriptors.
start1 = time.time()
if opt.method == 'lsd':
kls = pylbd.detect_lsd(img, 1, 1.44)
elif opt.method == 'edlines':
kls = pylbd.detect_edlines(img, 1, 1.44)
elif opt.method == 'tplsd':
kls = tplsd.detect_tplsd(oriimg)
end1 = time.time()
des = pylbd.describe_with_lbd(img, kls, 1, 1.44)
tracker.update(kls, des)
# Display visualization image to screen.
out = oriimg
tracker.draw_tracks(out,200)
cv.imshow(win,out)
key = cv.waitKey(opt.waitkey) & 0xFF
if key == ord('q'):
print('Quitting, \'q\' pressed.')
break
end = time.time()
net_t = (1./ float(end1 - start))
total_t = (1./ float(end - start))
frame = frame + 1
# Close any remaining windows.
cv.destroyAllWindows()
t_end = time.time()
print("Total time spent:%f"%(t_end-t_begin))
print("Average frame rate:%f"%(frame/(t_end-t_begin)))
print('==> Finshed Demo.')