-
Notifications
You must be signed in to change notification settings - Fork 9
/
puzzles.py
818 lines (625 loc) · 19.9 KB
/
puzzles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
import argparse
from typing import List
import os
import torch
import triton
import triton.language as tl
# Local imports
from display import print_end_line
from tensor_type import Float32, Int32
from test_puzzle import test
"""
# Triton Puzzles Lite
Programming for accelerators such as GPUs is critical for modern AI systems.
This often means programming directly in proprietary low-level languages such as CUDA. Triton is
an alternative open-source language that allows you to code at a higher-level and compile to accelerators
like GPU.
Coding for Triton is very similar to Numpy and PyTorch in both syntax and semantics. However, as a lower-level
language there are a lot of details that you need to keep track of. In particular, one area that learners have
trouble with is memory loading and storage which is critical for speed on low-level devices.
This set is puzzles is meant to teach you how to use Triton from first principles in an interactive fashion.
You will start with trivial examples and build your way up to real algorithms like Flash Attention and
Quantized neural networks. These puzzles **do not** need to run on GPU since they use a Triton interpreter.
"""
r"""
## Introduction
To begin with, we will only use `tl.load` and `tl.store` in order to build simple programs.
"""
"""
### Demo 1
Here's an example of load. It takes an `arange` over the memory. By default the indexing of
torch tensors with column, rows, depths or right-to-left. It also takes in a mask as the second
argument. Mask is critically important because all shapes in Triton need to be powers of two.
Expected Results:
[0 1 2 3 4 5 6 7]
[1. 1. 1. 1. 1. 0. 0. 0.]
Explanation:
tl.load(ptr, mask)
tl.load use mask: [0 1 2 3 4 5 6 7] < 5 = [1 1 1 1 1 0 0 0]
"""
@triton.jit
def demo1(x_ptr):
range = tl.arange(0, 8)
# print works in the interpreter
print(range)
x = tl.load(x_ptr + range, range < 5, 0)
print(x)
def run_demo1():
print("Demo1 Output: ")
demo1[(1, 1, 1)](torch.ones(4, 3))
print_end_line()
"""
### Demo 2:
You can also use this trick to read in a 2d array.
Expected Results:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]
[24 25 26 27]
[28 29 30 31]]
[[1. 1. 1. 0.]
[1. 1. 1. 0.]
[1. 1. 1. 0.]
[1. 1. 1. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
Explanation:
tl.load use mask: i < 4 and j < 3.
"""
@triton.jit
def demo2(x_ptr):
i_range = tl.arange(0, 8)[:, None]
j_range = tl.arange(0, 4)[None, :]
range = i_range * 4 + j_range
# print works in the interpreter
print(range)
x = tl.load(x_ptr + range, (i_range < 4) & (j_range < 3), 0)
print(x)
def run_demo2():
print("Demo2 Output: ")
demo2[(1, 1, 1)](torch.ones(4, 4))
print_end_line()
"""
### Demo 3
The `tl.store` function is quite similar. It allows you to write to a tensor.
Expected Results:
tensor([[10., 10., 10.],
[10., 10., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
Explanation:
tl.store(ptr, value, mask)
here range < 5 corresponds to the 2D-mask
[[1. 1. 1.]
[1. 1. 0.]
[0. 0. 0.]
[0. 0. 0.]]
"""
@triton.jit
def demo3(z_ptr):
range = tl.arange(0, 8)
z = tl.store(z_ptr + range, 10, range < 5)
def run_demo3():
print("Demo3 Output: ")
z = torch.ones(4, 3)
demo3[(1, 1, 1)](z)
print(z)
print_end_line()
"""
### Demo 4
You can only load in relatively small `blocks` at a time in Triton. To work
with larger tensors you need to use a program id axis to run multiple blocks in
parallel.
Here is an example with one program axis with 3 blocks.
Expected Results:
Print for each [0] [1. 1. 1. 1. 1. 1. 1. 1.]
Print for each [1] [1. 1. 1. 1. 1. 1. 1. 1.]
Print for each [2] [1. 1. 1. 1. 0. 0. 0. 0.]
Explanation:
This program launch 3 blocks in parallel. For each block (pid=0, 1, 2), it loads 8
elements. Note that similar to demo3, multi-dimensional tensors are flattened when we
use pointer (i.e. continuous in memory).
"""
@triton.jit
def demo4(x_ptr):
pid = tl.program_id(0)
range = tl.arange(0, 8) + pid * 8
x = tl.load(x_ptr + range, range < 20)
print("Print for each", pid, x)
def run_demo4():
print("Demo4 Output: ")
x = torch.ones(2, 4, 4)
demo4[(3, 1, 1)](x)
print_end_line()
r"""
## Puzzle 1: Constant Add
Add a constant to a vector. Uses one program id axis.
Block size `B0` is always the same as vector `x` with length `N0`.
.. math::
z_i = 10 + x_i \text{ for } i = 1\ldots N_0
"""
def add_spec(x: Float32[32,]) -> Float32[32,]:
"This is the spec that you should implement. Uses typing to define sizes."
return x + 10.0
@triton.jit
def add_kernel(x_ptr, z_ptr, N0, B0: tl.constexpr):
# We name the offsets of the pointers as "off_"
off_x = tl.arange(0, B0)
x = tl.load(x_ptr + off_x)
# Finish me!
return
r"""
## Puzzle 2: Constant Add Block
Add a constant to a vector. Uses one program block axis (no `for` loops yet).
Block size `B0` is now smaller than the shape vector `x` which is `N0`.
.. math::
z_i = 10 + x_i \text{ for } i = 1\ldots N_0
"""
def add2_spec(x: Float32[200,]) -> Float32[200,]:
return x + 10.0
@triton.jit
def add_mask2_kernel(x_ptr, z_ptr, N0, B0: tl.constexpr):
# Finish me!
return
r"""
## Puzzle 3: Outer Vector Add
Add two vectors.
Uses one program block axis. Block size `B0` is always the same as vector `x` length `N0`.
Block size `B1` is always the same as vector `y` length `N1`.
.. math::
z_{j, i} = x_i + y_j\text{ for } i = 1\ldots B_0,\ j = 1\ldots B_1
"""
def add_vec_spec(x: Float32[32,], y: Float32[32,]) -> Float32[32, 32]:
return x[None, :] + y[:, None]
@triton.jit
def add_vec_kernel(x_ptr, y_ptr, z_ptr, N0, N1, B0: tl.constexpr, B1: tl.constexpr):
# Finish me!
return
r"""
## Puzzle 4: Outer Vector Add Block
Add a row vector to a column vector.
Uses two program block axes. Block size `B0` is always less than the vector `x` length `N0`.
Block size `B1` is always less than vector `y` length `N1`.
.. math::
z_{j, i} = x_i + y_j\text{ for } i = 1\ldots N_0,\ j = 1\ldots N_1
"""
def add_vec_block_spec(x: Float32[100,], y: Float32[90,]) -> Float32[90, 100]:
return x[None, :] + y[:, None]
@triton.jit
def add_vec_block_kernel(
x_ptr, y_ptr, z_ptr, N0, N1, B0: tl.constexpr, B1: tl.constexpr
):
block_id_x = tl.program_id(0)
block_id_y = tl.program_id(1)
# Finish me!
return
r"""
## Puzzle 5: Fused Outer Multiplication
Multiply a row vector to a column vector and take a relu.
Uses two program block axes. Block size `B0` is always less than the vector `x` length `N0`.
Block size `B1` is always less than vector `y` length `N1`.
.. math::
z_{j, i} = \text{relu}(x_i \times y_j)\text{ for } i = 1\ldots N_0,\ j = 1\ldots N_1
"""
def mul_relu_block_spec(x: Float32[100,], y: Float32[90,]) -> Float32[90, 100]:
return torch.relu(x[None, :] * y[:, None])
@triton.jit
def mul_relu_block_kernel(
x_ptr, y_ptr, z_ptr, N0, N1, B0: tl.constexpr, B1: tl.constexpr
):
block_id_x = tl.program_id(0)
block_id_y = tl.program_id(1)
# Finish me!
return
r"""
## Puzzle 6: Fused Outer Multiplication - Backwards
Backwards of a function that multiplies a matrix with a row vector and take a relu.
Uses two program blocks. Block size `B0` is always less than the vector `x` length `N0`.
Block size `B1` is always less than vector `y` length `N1`. Chain rule backward `dz`
is of shape `N1` by `N0`
.. math::
f(x, y) = \text{relu}(x_{j, i} \times y_j)\text{ for } i = 1\ldots N_0,\ j = 1\ldots N_1
.. math::
dx_{j, i} = f_x'(x, y)_{j, i} \times dz_{j, i}
"""
def mul_relu_block_back_spec(
x: Float32[90, 100], y: Float32[90,], dz: Float32[90, 100]
) -> Float32[90, 100]:
x = x.clone()
y = y.clone()
x = x.requires_grad_(True)
y = y.requires_grad_(True)
z = torch.relu(x * y[:, None])
z.backward(dz)
dx = x.grad
return dx
@triton.jit
def mul_relu_block_back_kernel(
x_ptr, y_ptr, dz_ptr, dx_ptr, N0, N1, B0: tl.constexpr, B1: tl.constexpr
):
block_id_i = tl.program_id(0)
block_id_j = tl.program_id(1)
# Finish me!
return
r"""
## Puzzle 7: Long Sum
Sum of a batch of numbers.
Uses one program blocks. Block size `B0` represents a range of batches of `x` of length `N0`.
Each element is of length `T`. Process it `B1 < T` elements at a time.
.. math::
z_{i} = \sum^{T}_j x_{i,j} = \text{ for } i = 1\ldots N_0
Hint: You will need a for loop for this problem. These work and look the same as in Python.
"""
def sum_spec(x: Float32[4, 200]) -> Float32[4,]:
return x.sum(1)
@triton.jit
def sum_kernel(x_ptr, z_ptr, N0, N1, T, B0: tl.constexpr, B1: tl.constexpr):
# Finish me!
return
r"""
## Puzzle 8: Long Softmax
Softmax of a batch of logits.
Uses one program block axis. Block size `B0` represents the batch of `x` of length `N0`.
Block logit length `T`. Process it `B1 < T` elements at a time.
.. math::
z_{i, j} = \text{softmax}(x_{i,1} \ldots x_{i, T}) \text{ for } i = 1\ldots N_0
Note softmax needs to be computed in numerically stable form as in Python. In addition in Triton
they recommend not using `exp` but instead using `exp2`. You need the identity
.. math::
\exp(x) = 2^{\log_2(e) x}
Advanced: there one way to do this with 3 loops. You can also do it with 2 loops if you are clever.
Hint: you will find this identity useful:
.. math::
\exp(x_i - m) = \exp(x_i - m/2 - m/2) = \exp(x_i - m/ 2) / \exp(m/2)
"""
def softmax_spec(x: Float32[4, 200]) -> Float32[4, 200]:
x_max = x.max(1, keepdim=True)[0]
x = x - x_max
x_exp = x.exp()
return x_exp / x_exp.sum(1, keepdim=True)
@triton.jit
def softmax_kernel(x_ptr, z_ptr, N0, N1, T, B0: tl.constexpr, B1: tl.constexpr):
"""2 loops ver."""
block_id_i = tl.program_id(0)
log2_e = 1.44269504
# Finish me!
return
@triton.jit
def softmax_kernel_brute_force(
x_ptr, z_ptr, N0, N1, T, B0: tl.constexpr, B1: tl.constexpr
):
"""3 loops ver."""
block_id_i = tl.program_id(0)
log2_e = 1.44269504
# Finish me!
return
r"""
## Puzzle 9: Simple FlashAttention
A scalar version of FlashAttention.
Uses zero programs. Block size `B0` represent the batches of `q` to process out of `N0`. Sequence length is `T`. Process it `B1 < T` elements (`k`, `v`) at a time for some `B1`.
.. math::
z_{i} = \sum_{j=1}^{T} \text{softmax}(q_i k_1, \ldots, q_i k_T)_j v_{j} \text{ for } i = 1\ldots N_0
This can be done in 1 loop using a similar trick from the last puzzle.
Hint: Use `tl.where` to mask `q dot k` to -inf to avoid overflow (NaN).
"""
def flashatt_spec(
q: Float32[200,], k: Float32[200,], v: Float32[200,]
) -> Float32[200,]:
x = q[:, None] * k[None, :]
x_max = x.max(1, keepdim=True)[0]
x = x - x_max
x_exp = x.exp()
soft = x_exp / x_exp.sum(1, keepdim=True)
return (v[None, :] * soft).sum(1)
@triton.jit
def flashatt_kernel(
q_ptr, k_ptr, v_ptr, z_ptr, N0, T, B0: tl.constexpr, B1: tl.constexpr
):
block_id_i = tl.program_id(0)
log2_e = 1.44269504
myexp = lambda x: tl.exp2(log2_e * x)
# Finish me!
return
r"""
## Puzzle 10: Two Dimensional Convolution
A batched 2D convolution.
Uses one program id axis. Block size `B0` represent the batches to process out of `N0`.
Image `x` is size is `H` by `W` with only 1 channel, and kernel `k` is size `KH` by `KW`.
.. math::
z_{i, j, l} = \sum_{oj, ol}^{j+oj\le H, l+ol\le W} k_{oj,ol} \times x_{i,j + oj, l + ol}
\text{ for } i = 1\ldots N_0 \text{ for } j = 1\ldots H \text{ for } l = 1\ldots W
"""
def conv2d_spec(x: Float32[4, 8, 8], k: Float32[4, 4]) -> Float32[4, 8, 8]:
z = torch.zeros(4, 8, 8)
x = torch.nn.functional.pad(x, (0, 4, 0, 4, 0, 0), value=0.0)
# print(x.shape, k.shape)
for i in range(8):
for j in range(8):
z[:, i, j] = (k[None, :, :] * x[:, i : i + 4, j : j + 4]).sum(1).sum(1)
return z
@triton.jit
def conv2d_kernel(
x_ptr, k_ptr, z_ptr, N0, H, W, KH: tl.constexpr, KW: tl.constexpr, B0: tl.constexpr
):
block_id_i = tl.program_id(0)
# Finish me!
return
r"""
## Puzzle 11: Matrix Multiplication
A blocked matrix multiplication.
Uses three program id axes. Block size `B2` represent the batches to process out of `N2`.
Block size `B0` represent the rows of `x` to process out of `N0`. Block size `B1` represent the cols
of `y` to process out of `N1`. The middle shape is `MID`.
.. math::
z_{i, j, k} = \sum_{l} x_{i,j, l} \times y_{i, l, k} \text{ for } i = 1\ldots N_2, j = 1\ldots N_0, k = 1\ldots N_1
You are allowed to use `tl.dot` which computes a smaller mat mul.
Hint: the main trick is that you can split a matmul into smaller parts.
.. math::
z_{i, j, k} = \sum_{l=1}^{L/2} x_{i,j, l} \times y_{i, l, k} + \sum_{l=L/2}^{L} x_{i,j, l} \times y_{i, l, k}
"""
def dot_spec(x: Float32[4, 32, 32], y: Float32[4, 32, 32]) -> Float32[4, 32, 32]:
return x @ y
@triton.jit
def dot_kernel(
x_ptr,
y_ptr,
z_ptr,
N0,
N1,
N2,
MID,
B0: tl.constexpr,
B1: tl.constexpr,
B2: tl.constexpr,
B_MID: tl.constexpr,
):
block_id_j = tl.program_id(0)
block_id_k = tl.program_id(1)
block_id_i = tl.program_id(2)
# Finish me!
return
r"""
## Puzzle 12: Quantized Matrix Mult
When doing matrix multiplication with quantized neural networks a common strategy is to store the weight matrix in lower precision, with a shift and scale term.
For this problem our `weight` will be stored in 4 bits. We can store `FPINT` of these in a 32 bit integer. In addition for every `group` weights in order we will store 1 `scale` float value and 1 `shift` 4 bit value. We store these for the column of weight. The `activation`s are stored separately in standard floats.
Mathematically it looks like.
.. math::
z_{j, k} = \sum_{l} sc_{j, \frac{l}{g}} (w_{j, l} - sh_{j, \frac{l}{g}}) \times y_{l, k}
\text{ for } j = 1\ldots N_0, k = 1\ldots N_1
Where `g` is the number of groups (`GROUP`).
However, it is a bit more complex since we need to also extract the 4-bit values into floats to begin.
Note:
- We don't consider batch size, i.e. `i`, in this puzzle.
- Remember to unpack the `FPINT` values into separate 4-bit values. This contains some shape manipulation.
"""
FPINT = 32 // 4
GROUP = 8
def quant_dot_spec(
scale: Float32[32, 8],
offset: Int32[32,],
weight: Int32[32, 8],
activation: Float32[64, 32],
) -> Float32[32, 32]:
offset = offset.view(32, 1)
def extract(x):
over = torch.arange(8) * 4
mask = 2**4 - 1
return (x[..., None] >> over) & mask
scale = scale[..., None].expand(-1, 8, GROUP).contiguous().view(-1, 64)
offset = (
extract(offset)[..., None].expand(-1, 1, 8, GROUP).contiguous().view(-1, 64)
)
return (scale * (extract(weight).view(-1, 64) - offset)) @ activation
@triton.jit
def quant_dot_kernel(
scale_ptr,
offset_ptr,
weight_ptr,
activation_ptr,
z_ptr,
N0,
N1,
MID,
B0: tl.constexpr,
B1: tl.constexpr,
B_MID: tl.constexpr,
):
block_id_j = tl.program_id(0)
block_id_k = tl.program_id(1)
# Finish me!
return
def run_demos():
run_demo1()
run_demo2()
run_demo3()
run_demo4()
def run_puzzles(args, puzzles: List[int]):
print_log = args.log
device = args.device
if 1 in puzzles:
print("Puzzle #1:")
ok = test(
add_kernel,
add_spec,
nelem={"N0": 32},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 2 in puzzles:
print("Puzzle #2:")
ok = test(
add_mask2_kernel,
add2_spec,
nelem={"N0": 200},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 3 in puzzles:
print("Puzzle #3:")
ok = test(
add_vec_kernel,
add_vec_spec,
nelem={"N0": 32, "N1": 32},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 4 in puzzles:
print("Puzzle #4:")
ok = test(
add_vec_block_kernel,
add_vec_block_spec,
nelem={"N0": 100, "N1": 90},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 5 in puzzles:
print("Puzzle #5:")
ok = test(
mul_relu_block_kernel,
mul_relu_block_spec,
nelem={"N0": 100, "N1": 90},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 6 in puzzles:
print("Puzzle #6:")
ok = test(
mul_relu_block_back_kernel,
mul_relu_block_back_spec,
nelem={"N0": 100, "N1": 90},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 7 in puzzles:
print("Puzzle #7:")
ok = test(
sum_kernel,
sum_spec,
B={"B0": 1, "B1": 32},
nelem={"N0": 4, "N1": 32, "T": 200},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 8 in puzzles:
print("Puzzle #8:")
ok = test(
softmax_kernel,
softmax_spec,
B={"B0": 1, "B1": 32},
nelem={"N0": 4, "N1": 32, "T": 200},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 9 in puzzles:
print("Puzzle #9:")
ok = test(
flashatt_kernel,
flashatt_spec,
B={"B0": 64, "B1": 32},
nelem={"N0": 200, "T": 200},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 10 in puzzles:
print("Puzzle #10:")
ok = test(
conv2d_kernel,
conv2d_spec,
B={"B0": 1},
nelem={"N0": 4, "H": 8, "W": 8, "KH": 4, "KW": 4},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 11 in puzzles:
print("Puzzle #11:")
ok = test(
dot_kernel,
dot_spec,
B={"B0": 16, "B1": 16, "B2": 1, "B_MID": 16},
nelem={"N0": 32, "N1": 32, "N2": 4, "MID": 32},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
if 12 in puzzles:
print("Puzzle #12:")
ok = test(
quant_dot_kernel,
quant_dot_spec,
B={"B0": 16, "B1": 16, "B_MID": 64},
nelem={"N0": 32, "N1": 32, "MID": 64},
print_log=print_log,
device=device,
)
print_end_line()
if not ok:
return
print("All tests passed!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--puzzle", type=int, metavar="N", help="Run Puzzle #N")
parser.add_argument(
"-a",
"--all",
action="store_true",
help="Run all Puzzles. Stop at first failure.",
)
parser.add_argument("-l", "--log", action="store_true", help="Print log messages.")
parser.add_argument(
"-i",
"--intro",
action="store_true",
help="Run all demos in the introduction part.",
)
args = parser.parse_args()
if os.getenv("TRITON_INTERPRET", "0") == "1":
torch.set_default_device("cpu")
args.device = "cpu"
else: # GPU mode
torch.set_default_device("cuda")
args.device = "cuda"
if args.intro:
run_demos()
elif args.all:
run_puzzles(args, list(range(1, 13)))
elif args.puzzle:
run_puzzles(args, [int(args.puzzle)])
else:
parser.print_help()