forked from OPPO-Mente-Lab/Subject-Diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.sh
105 lines (94 loc) · 3.21 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/bin/bash
#SBATCH --job-name=finetune_oppo # create a short name for your job
#SBATCH --nodes=1 # node count
#SBATCH --ntasks-per-node=8 # number of tasks to run per node
#SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks)
#SBATCH --gres=gpu:8 # number of gpus per node
#SBATCH -o %x-%j.log # output and error log file names (%x for job id)
#SBATCH -x dgx050
export CPATH=/usr/local/cuda/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda/bin:$PATH
export NCCL_P2P_LEVEL=NVL
export NCCL_IB_DISABLE=1
# pwd=Fengshenbang-LM/fengshen/examples/pretrain_erlangshen
ROOT_DIR=/public_data/ma/code/GLIGEN-master/results_mul
# export TORCH_EXTENSIONS_DIR=/public_data/wrc/torch_extensions
MODEL_NAME=glyphdraw_multi_2
MODEL_ROOT_DIR=$ROOT_DIR/${MODEL_NAME}
if [ ! -d ${MODEL_ROOT_DIR} ];then
mkdir ${MODEL_ROOT_DIR}
fi
MICRO_BATCH_SIZE=8
GPUS_PER_NODE=$2
NNODES=4
## sudo cp /public_data/ma/code/stablediffusion-main/OPPO_Sans/OPPOSans-S-M-0802.ttf /usr/share/fonts/dejavu
## sudo chmod 777 /usr/share/fonts/dejavu/OPPOSans-S-M-0802.ttf
# 如果你不用Deepspeed的话 下面的一段话都可以删掉 Begin
CONFIG_JSON="$MODEL_ROOT_DIR/${MODEL_NAME}.ds_config.json"
ZERO_STAGE=1
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $CONFIG_JSON
{
"zero_optimization": {
"stage": ${ZERO_STAGE}
},
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE
}
EOT
export PL_DEEPSPEED_CONFIG_PATH=$CONFIG_JSON
# /public_data/ma/data_process/aesthetics_tar_sam/{00000..26000}.tar \
# /public_data/ma/data_process/BLIP_tar_512_sam/{00000..12068}.tar \
DATA_ARGS="\
--webdataset_base_urls \
/public_data/ma/data_process/aesthetics_tar_sam/{00000..44487}.tar \
--num_workers 2 \
--batch_size $MICRO_BATCH_SIZE \
--shard_width 5 \
--hr_size 512 \
--train_split 1.0 \
--val_split 0.0 \
--test_split 0.0 \
--resample_train \
"
MODEL_ARGS="\
--model_path /public_data/ma/stable_models/model_base \
--learning_rate 3e-5 \
--weight_decay 0 \
--warmup_steps 1000 \
"
MODEL_CHECKPOINT_ARGS="\
--save_last \
--save_ckpt_path ${MODEL_ROOT_DIR}/ckpt \
--load_ckpt_path ${MODEL_ROOT_DIR}/ckpt/last.ckpt \
"
TRAINER_ARGS="\
--max_epoch 10 \
--accelerator gpu \
--devices $GPUS_PER_NODE \
--num_nodes $NNODES \
--strategy deepspeed_stage_${ZERO_STAGE} \
--log_every_n_steps 100 \
--precision 16 \
--default_root_dir ${MODEL_ROOT_DIR} \
--replace_sampler_ddp False \
--num_sanity_val_steps 0 \
--limit_val_batches 0 \
"
# num_sanity_val_steps, limit_val_batches 通过这俩参数把validation关了
export options=" \
$DATA_ARGS \
$MODEL_ARGS \
$MODEL_CHECKPOINT_ARGS \
$TRAINER_ARGS \
"
export CC=gcc
export CXX=g++
# python finetune_ori.py $options
python -m torch.distributed.run \
--nnodes $NNODES \
--master_addr 10.25.193.83 \
--master_port 29500 \
--node_rank $1 \
--nproc_per_node $GPUS_PER_NODE \
train.py $options