forked from OPPO-Mente-Lab/Subject-Diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_dataset.py
847 lines (759 loc) · 34.2 KB
/
custom_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
import io
import random
import cv2
from torchvision.transforms import functional as F
import braceexpand
from torchvision.utils import save_image
from transformers import CLIPTokenizer
import os
import numpy as np
import torch
import webdataset as wds
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import transforms
import imgviz
from tqdm import tqdm
from torch.utils.data import DataLoader, random_split
from prefetch_generator import BackgroundGenerator
from pytorch_lightning import LightningDataModule
colormap = imgviz.label_colormap(80)
USED_KEYS = {"jpg": "instance_images",
"json": "mask", "png": "instance_masks"}
max_num_objects = 2
area_min = 0.08
area_max = 0.7
ratio_min = 0.3
ratio_max = 3
score = 0.3
iou_ratio = 0.8
fill_bbox_ratio = 0.6
max_bbox_num_subj = 5
SKS_ID = 48136
def expand_urls(urls):
if isinstance(urls, str):
urllist = urls.split("::")
result = []
for url in urllist:
result.extend(braceexpand.braceexpand(url))
return result
else:
return list(urls)
def custom_decoder(key, data):
"Customize the decoder to process the original image and mask, and the original image processing method is equivalent to pil or pilrgb"
import PIL.Image
if key.endswith("png"):
# return None
with io.BytesIO(data) as stream:
img = PIL.Image.open(stream)
img.load()
# result = img.convert("RGB")
# result = img.convert("L")
return img
elif key.endswith("jpg"):
with io.BytesIO(data) as stream:
img = PIL.Image.open(stream)
img.load()
result = img.convert("RGB")
return result
else:
return None
def is_valid_bbox(mask, bbox):
crop_mask = mask[0, int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])]
colors, mask_area = crop_mask.unique(return_counts=True)
# Limit the number of entities within a bbox
if len(mask_area) > max_bbox_num_subj or len(mask_area) < 2:
return False
# The proportion of the main mask area within the box is greater than the threshold
if mask_area.max()/(bbox[2]-bbox[0])/(bbox[3]-bbox[1]) < fill_bbox_ratio:
return False
# Filter out situations where the mask area of the main body is larger than that of the bbox
if (mask == colors[mask_area[1:].argmax()+1]).sum() > (bbox[2]-bbox[0])*(bbox[3]-bbox[1]):
return False
return True
def is_contained(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
if x2 > x1 and y2 > y1:
ratio = (y2-y1)*(x2-x1)/min((box1[2]-box1[0]) *
(box1[3]-box1[1]), (box2[2]-box2[0])*(box2[3]-box2[1]))
if ratio > iou_ratio:
return True
return False
def verify_keys(samples, required_keys, hr_size, handler=wds.handlers.reraise_exception):
"""
Requires that both the image and embedding are present in the sample
This is important to do as a user may forget they do not have embeddings in their webdataset and neglect to add them using the embedding_folder_url parameter.
"""
for sample in samples:
try:
w, h = sample["jpg"].size
mask = transforms.ToTensor()(sample["png"])
image = transforms.ToTensor()(sample["jpg"])
# Filter images with a high proportion of background and more white color
if torch.all((image > 0.9), dim=0).sum() > w*h/10:
continue
if "mask" in sample["json"]:
cat_prompts = [name["label"]
for name in sample["json"]["mask"] if "box" in name]
bbox_ori = torch.stack(
[torch.tensor(name["box"]) for name in sample["json"]["mask"] if "box" in name])
w_h_ratio = (bbox_ori[:, 2]-bbox_ori[:, 0]) / \
(bbox_ori[:, 3]-bbox_ori[:, 1])
area_ratio = (bbox_ori[:, 2]-bbox_ori[:, 0]) * \
(bbox_ori[:, 3]-bbox_ori[:, 1])/w/h
# Priority selection for high scoring bbox
# bbox = bbox_ori / torch.tensor([w,h,w,h]) # 归一化
# bbox_area = [float(abs((x[2]-x[0])*(x[3]-x[1]))) for x in bbox]
logits = torch.tensor([t["logit"]
for t in sample['json']["mask"][1:]])
indices = logits.argsort(descending=True)
# bbox_w_h = [float(abs((x[2]-x[0])-(x[3]-x[1]))) for x in bbox]
bbox_selects = []
for index in indices:
if area_min < area_ratio[index] < area_max and ratio_min < w_h_ratio[index] < ratio_max and logits[index] > score and " " not in cat_prompts[index] and sample["json"]["caption"].find(cat_prompts[index]) != -1:
# if area_min<i<area_max and j<w_h and s>score and sample["json"]["mask"][indexs+1]["label"] in sample["json"]["capFtion"]:
if not is_valid_bbox(mask, bbox_ori[index]):
continue
# Filter high iou and duplicate entities
flag = True
for bbox_select in bbox_selects:
if is_contained(bbox_ori[bbox_select], bbox_ori[index]):
flag = False
break
if flag:
bbox_selects.append(index)
if len(bbox_selects) > 0:
ret_val = {key: sample[key] for key in required_keys}
ret_val["bbox_selects"] = bbox_selects
yield ret_val
# coco
else:
if len(sample['json']["bboxes"]) > 0:
bbox_ori = torch.tensor(sample["json"]["bboxes"])
w_h_ratio = (bbox_ori[:, 2]-bbox_ori[:, 0]) / \
(bbox_ori[:, 3]-bbox_ori[:, 1])
area_ratio = (bbox_ori[:, 2]-bbox_ori[:, 0]) * \
(bbox_ori[:, 3]-bbox_ori[:, 1])/w/h
indices = area_ratio.argsort(descending=True)
bbox_selects = []
cat_prompts = sample["json"]['cat_names']
for index in indices:
if area_min < area_ratio[index] < area_max and ratio_min < w_h_ratio[index] < ratio_max and is_valid_bbox(mask, bbox_ori[index]):
flag = True
for bbox_select in bbox_selects:
if is_contained(bbox_ori[bbox_select], bbox_ori[index]):
flag = False
break
if flag:
bbox_selects.append(index)
if len(bbox_selects) > 0:
# ret_val = {key: sample[key] for key in required_keys}
sample["bbox_selects"] = bbox_selects
yield sample
except Exception as exn: # From wds implementation
if handler(exn):
continue
else:
break
def fill_cavity(input_mask):
# fast but not accurate
cumsum = input_mask.cumsum(-1)
filled_mask = (cumsum > 0)
filled_mask &= (cumsum < cumsum[..., -1:])
cumsum = input_mask.cumsum(-2)
filled_mask &= (cumsum > 0)
filled_mask &= (cumsum < cumsum[..., -1:, :])
return filled_mask
def image_seg(bbox, pixel_seg):
cropped_seg = pixel_seg[:, bbox[1]:bbox[3], bbox[0]:bbox[2]]
colors, mask_counts = torch.unique(
cropped_seg, return_counts=True, sorted=True)
if len(mask_counts) > 1:
max_mask_idx = mask_counts[1:].argmax()+1
elif len(mask_counts) == 1:
max_mask_idx = 0
else:
return torch.zeros_like(pixel_seg)
return fill_cavity((pixel_seg == colors[max_mask_idx]).float())
def post_bbox_filter(bbox):
if (bbox[3]-bbox[1]) * (bbox[2]-bbox[0]) > 200 and ratio_min < (bbox[3]-bbox[1])/(bbox[2]-bbox[0]) < ratio_max:
return True
else:
return False
def make_prompt(tokenizer, ori_prompt, entities):
template_text = ori_prompt.strip() + \
"".join([f", the {entity} is sks" for entity in entities])
input_ids = tokenizer(
template_text,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
image_token_mask = (input_ids == SKS_ID)[0]
image_token_idx = image_token_mask.nonzero().squeeze(1)
if len(image_token_idx) < max_num_objects:
image_token_idx = torch.cat((image_token_idx, torch.zeros(
max_num_objects-len(image_token_idx), dtype=bool)))
elif len(image_token_idx) > max_num_objects:
image_token_idx = image_token_idx[-max_num_objects:]
return template_text, input_ids, image_token_mask, image_token_idx
def get_entity_image(bbox, object_segmap, instance_image, pad_white=1):
image_augmentation = transforms.Compose([transforms.RandomHorizontalFlip(p=0.5), transforms.RandomRotation(degrees=10), transforms.RandomPerspective(distortion_scale=0.5, p=0.5), transforms.Resize(
224, interpolation=transforms.functional._interpolation_modes_from_int(0)),
transforms.RandomCrop(224), transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(
0.26862954, 0.26130258, 0.27577711))])
if pad_white:
image = (instance_image*object_segmap+1 -
object_segmap)[:, bbox[1]:bbox[3], bbox[0]:bbox[2]]
else:
image = (instance_image *
object_segmap)[:, bbox[1]:bbox[3], bbox[0]:bbox[2]]
if bbox[3]-bbox[1] < bbox[2]-bbox[0]:
pad_size = int(bbox[2]-bbox[0]-bbox[3]+bbox[1])//2
image = F.pad(image, (0, pad_size, 0, pad_size), pad_white)
elif bbox[3]-bbox[1] > bbox[2]-bbox[0]:
pad_size = int(-bbox[2]+bbox[0]+bbox[3]-bbox[1])//2
image = F.pad(image, (pad_size, 0, pad_size, 0), pad_white)
return image_augmentation(image)
def post_verify(samples, tokenizer, hr_size, handler=wds.handlers.reraise_exception):
"""
Requires that both the image and embedding are present in the sample
This is important to do as a user may forget they do not have embeddings in their webdataset and neglect to add them using the embedding_folder_url parameter.
"""
for sample in samples:
masks = sample["mask"]
input_ids = tokenizer(
sample["instance_prompt"],
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
if (input_ids == SKS_ID).any():
continue
kept_masks = []
kept_entities = []
bboxes = torch.zeros((max_num_objects, 4))
image_token_idx_mask = torch.zeros((max_num_objects), dtype=bool)
padded_object_segmaps = torch.zeros(
(max_num_objects, hr_size, hr_size))
entity_images = torch.zeros(max_num_objects, 3, 224, 224)
for i, mask in enumerate(masks):
y, x = torch.where(mask == 0)
if len(y) == 0 or not post_bbox_filter([x.min(), y.min(), x.max(), y.max()]):
continue
bbox = (x.min(), y.min(), x.max(), y.max())
padded_object_segmaps[len(kept_masks)] = image_seg(
bbox, sample["instance_seg"])
entity_images[len(kept_masks)] = get_entity_image(
bbox, padded_object_segmaps[len(kept_masks)], sample["instance_image"])
image_token_idx_mask[len(kept_masks)] = True
bboxes[len(kept_masks)] = torch.tensor(
[bbox])/512
kept_masks.append(mask.unsqueeze(0))
kept_entities.append(sample["cat_prompts"][i])
if len(kept_masks) == max_num_objects:
break
if len(kept_masks) == 0:
continue
else:
sample["mask"] = torch.cat(kept_masks)
sample["cat_prompts"] = kept_entities
sample["bboxes"] = bboxes
template_text, input_ids, image_token_mask, image_token_idx = make_prompt(tokenizer,
sample["instance_prompt"], kept_entities)
sample["instance_prompt"] = template_text
sample["image_token_idx"] = image_token_idx
# b, max_num_objects, _, _
sample["object_segmaps"] = padded_object_segmaps
# if image_token_idx[0] == image_token_idx[1]:
# image_token_idx[1] += 1
# b, max_num_objects
sample["image_token_idx_mask"] = image_token_idx_mask
sample["entity_images"] = entity_images
# sample["input_ids"] = input_ids
sample["image_token_mask"] = image_token_mask
yield sample
key_verifier = wds.filters.pipelinefilter(verify_keys)
post_key_verifier = wds.filters.pipelinefilter(post_verify)
class ImageEmbeddingDataset(wds.DataPipeline, wds.compat.FluidInterface):
"""
A fluid interface wrapper for DataPipeline that returns image embedding pairs
Reads embeddings as npy files from the webdataset if they exist. If embedding_folder_url is set, they will be inserted in from the alternate source.
"""
def __init__(
self,
urls,
tokenizer=None,
extra_keys=[],
hr_size=-1,
size=512,
handler=wds.handlers.reraise_exception,
resample=False,
shuffle_shards=True,
center_crop=False,
shuffle_cat=False,
replace_bg=True
):
super().__init__()
keys = list(USED_KEYS.keys()) + extra_keys
# self.key_map = {key: i for i, key in enumerate(keys)}
self.resampling = resample
self.hr_size = hr_size
self.size = size
self.shuffle_cat = shuffle_cat
self.tokenizer = tokenizer
if resample:
assert not shuffle_shards, "Cannot both resample and shuffle"
self.append(wds.ResampledShards(urls))
else:
self.append(wds.SimpleShardList(urls))
if shuffle_shards:
self.append(wds.filters.shuffle(1000))
self.append(wds.tarfile_to_samples(handler=handler))
self.append(wds.decode(custom_decoder, handler=handler))
self.append(key_verifier(required_keys=keys,
hr_size=hr_size, handler=handler))
# Apply preprocessing
self.append(wds.map(self.preproc))
self.append(post_key_verifier(tokenizer=tokenizer,
hr_size=hr_size, handler=handler))
self.image_transforms_mask = transforms.Compose(
[
transforms.Resize(
size, interpolation=transforms.functional._interpolation_modes_from_int(0)),
transforms.CenterCrop(size),
transforms.ToTensor()
]
)
self.image_transforms_mask_nocrop = transforms.Compose(
[
transforms.Resize(
size, interpolation=transforms.functional._interpolation_modes_from_int(0)),
transforms.ToTensor(),
]
)
self.image_transforms = transforms.Compose(
[
transforms.Resize(
size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size),
transforms.ToTensor(),
# transforms.Normalize(0.5,0.5)
]
)
self.image_transforms_nocrop = transforms.Compose(
[
transforms.Resize(
size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
# transforms.Normalize(0.5,0.5)
]
)
self.replace_bg = replace_bg
if replace_bg:
self.bg_transform = transforms.Compose(
[transforms.Resize(
224, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.RandomCrop(224),
transforms.ToTensor(),
# transforms.RandomHorizontalFlip(0.5)
]
)
self.bg_img_path = "/data_share/liangjunhao/BG-20k/train"
self.bg_img_list = os.listdir(self.bg_img_path)
self.append(wds.map(self.synthesize))
self.image_augmentation = transforms.Compose([transforms.RandomHorizontalFlip(p=0.5), transforms.RandomRotation(degrees=10), transforms.RandomPerspective(distortion_scale=0.5, p=0.5), transforms.Resize(
224, interpolation=transforms.functional._interpolation_modes_from_int(0)),
transforms.RandomCrop(224), transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(
0.26862954, 0.26130258, 0.27577711))])
def transform(self, image_ori, bbox, bbox_selects, image_seg):
# custom resize
mask_imgs = []
mask_imgs_crop = []
w, h = image_ori.width, image_ori.height
min_x, min_y, max_x, max_y = int(bbox[:, 0].min()), int(
bbox[:, 1].min()), int(bbox[:, 2].max()), int(bbox[:, 3].max())
for bbox_select in bbox_selects:
mask_img = np.zeros((h, w))
x_1, y_1, x_2, y_2 = bbox[bbox_select]
polygon = np.array([[x_1, y_1], [x_2, y_1], [x_2, y_2], [
x_1, y_2]], np.int32)
mask_img = cv2.fillConvexPoly(mask_img, polygon, (1, 1, 1))
mask_img = Image.fromarray(mask_img)
mask_imgs.append(mask_img)
# Using the largest box as the drop benchmark
# x_1,y_1,x_2,y_2 = bbox[bbox_selects[0]]
# polygon = np.array([[x_1,y_1],[x_2,y_1],[x_2,y_2],[x_1,y_2]], np.int32) # 坐标为顺时针方向
crop_size = min(w, h)
# x1, x2, y1, y2 = np.min(polygon[:,0]),np.max(polygon[:,0]),np.min(polygon[:,1]),np.max(polygon[:,1])
x_b, x_e = max(0, max_x - crop_size), min(min_x, w - crop_size)
y_b, y_e = max(0, max_y - crop_size), min(min_y, h - crop_size)
# bbox_selects_new = []
if x_b <= x_e and y_b <= y_e:
start_x = random.randint(
max(0, max_x - crop_size), min(min_x, w - crop_size))
start_y = random.randint(
max(0, max_y - crop_size), min(min_y, h - crop_size))
instance_image_crop = F.crop(
image_ori, start_y, start_x, crop_size, crop_size)
instance_image_seg_crop = F.crop(
image_seg, start_y, start_x, crop_size, crop_size)
image = self.image_transforms_nocrop(instance_image_crop)
image_seg = self.image_transforms_mask_nocrop(
instance_image_seg_crop)
for i, mask_img in enumerate(mask_imgs):
mask_img = F.crop(mask_img, start_y, start_x,
crop_size, crop_size)
mask_img = self.image_transforms_mask_nocrop(mask_img)
# bbox_selects_new.append(bbox_selects[i])
mask_imgs_crop.append(1-mask_img)
# else:
# if len(torch.unique(mask_img))!=1:
# bbox_selects_new.append(bbox_selects[i])
# mask_imgs_crop.append(1-mask_img)
else:
for i, mask_img in enumerate(mask_imgs):
mask_img = self.image_transforms_mask(mask_img)
# if i==0:
# bbox_selects_new.append(bbox_selects[i])
mask_imgs_crop.append(1-mask_img)
# else:
# if len(torch.unique(mask_img))!=1:
# bbox_selects_new.append(bbox_selects[i])
# mask_imgs_crop.append(1-mask_img)
image = self.image_transforms(image_ori)
image_seg = self.image_transforms_mask(image_seg)
return image, torch.cat(mask_imgs_crop), image_seg
# return image, torch.prod(torch.cat(mask_imgs_crop),dim=0), image_seg
def preproc(self, sample):
example = {}
instance_image = sample["jpg"]
w, h = instance_image.size
# SAM data
if "mask" in sample["json"]:
bbox_ori = torch.stack([torch.tensor(name["box"])
for name in sample["json"]["mask"] if "box" in name])
bbox_selects = sample["bbox_selects"]
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_image"], example["mask"], example["instance_seg"] = self.transform(
instance_image, bbox_ori, bbox_selects, sample["png"])
example["instance_prompt"] = sample["json"]["caption"]
# example["bbox"] = [bbox[bbox_select] for bbox_select in bbox_selects]
example["cat_prompts"] = [[name["label"] for name in sample["json"]
["mask"] if "box" in name][bbox_select] for bbox_select in bbox_selects]
# coco data
else:
bbox_ori = torch.tensor(sample["json"]["bboxes"])
# bbox = bbox_ori / torch.tensor([w, h, w, h]) # 归一化
# bbox_area = [float(abs((x[2]-x[0])*(x[3]-x[1]))) for x in bbox]
# bbox_w_h = [float(abs((x[2]-x[0])-(x[3]-x[1]))) for x in bbox]
bbox_selects = sample["bbox_selects"]
example["instance_image"], example["mask"], example["instance_seg"] = self.transform(
instance_image, bbox_ori, bbox_selects, sample["png"])
# example["bbox"] = [bbox[bbox_select] for bbox_select in bbox_selects]
example["cat_prompts"] = [sample["json"]["cat_names"]
[bbox_select] for bbox_select in bbox_selects]
if "txt" in sample:
example["instance_prompt"] = sample["txt"]
else:
example["instance_prompt"] = sample["json"]["caption"]
# example["bbox"] = bbox_ori[bbox_selects]
# example["bbox_num"] = len(sample["json"]["bboxes"])
return example
def synthesize(self, sample):
def get_matting_coords(h, w, H=224, W=224):
scale = (H*W/2/h/w)**0.5
h = min(int(h*scale), H)
w = min(int(w*scale), W)
x1 = random.randint(0, W-w)
y1 = random.randint(0, H-h)
return x1, y1, w, h
bg_imgs = torch.zeros(max_num_objects, 3, 224, 224)
for i, bbox in enumerate(sample["bboxes"]):
if not sample["image_token_idx_mask"][i]:
continue
bbox = (bbox*512).long()
bg_path = random.choice(self.bg_img_list)
bg_img = Image.open(os.path.join(self.bg_img_path, bg_path))
bg_img = self.bg_transform(bg_img)
mask = sample["object_segmaps"][i:i+1,
bbox[1]:bbox[3], bbox[0]:bbox[2]]
img = sample["instance_image"][:, bbox[1]:bbox[3], bbox[0]:bbox[2]]
x1, y1, w, h = get_matting_coords(mask.size(-2), mask.size(-1))
mask = transforms.Resize(size=(h, w))(mask)
img = transforms.Resize(size=(h, w))(img)
bg_img[:, y1:y1+h, x1:x1+w] = bg_img[:,
y1:y1+h, x1:x1+w]*(1-mask)+img*mask
bg_imgs[i] = self.image_augmentation(bg_img)
sample["entity_images"] = bg_imgs
return sample
def collate_fn(examples):
texts = []
pixel_values = []
masks = []
entitys = []
pixel_segs = []
object_segmaps = []
image_token_idx = []
image_token_idx_mask = []
entity_images = []
bboxes = []
image_token_mask = []
for example in examples:
texts.append(example["instance_prompt"])
pixel_values.append(example["instance_image"])
pixel_segs.append(example["instance_seg"])
entitys.append(example["cat_prompts"])
masks.append(example["mask"])
object_segmaps.append(example["object_segmaps"])
image_token_idx.append(example["image_token_idx"])
image_token_idx_mask.append(example["image_token_idx_mask"])
entity_images.append(example["entity_images"])
bboxes.append(example["bboxes"])
image_token_mask.append(example["image_token_mask"])
# masks = torch.stack(masks)
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(
memory_format=torch.contiguous_format).float()
pixel_segs = torch.stack(pixel_segs)
pixel_segs = pixel_segs.to(
memory_format=torch.contiguous_format).float()
batch = {
"texts": texts,
"pixel_values": pixel_values,
"pixel_segs": pixel_segs,
"entitys": entitys,
"masks": masks,
"object_segmaps": torch.stack(object_segmaps).to(
memory_format=torch.contiguous_format),
"image_token_idx": torch.stack(image_token_idx).to(
memory_format=torch.contiguous_format),
"image_token_idx_mask": torch.stack(image_token_idx_mask).to(
memory_format=torch.contiguous_format),
"image_token_mask": torch.stack(image_token_mask).to(
memory_format=torch.contiguous_format),
"entity_images": torch.stack(entity_images).to(memory_format=torch.contiguous_format),
"bboxes": torch.stack(bboxes).to(memory_format=torch.contiguous_format),
}
return batch
class DataLoaderX(DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
class DataModuleCustom(LightningDataModule):
@ staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('Universal DataModule')
parser.add_argument('--webdataset_base_urls', type=str, nargs="+")
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--batch_size', default=16, type=int)
# parser.add_argument('--start_shard', default=0, type=int)
# parser.add_argument('--end_shard', default=1000, type=int)
parser.add_argument('--shard_width', default=5, type=int)
parser.add_argument('--hr_size', default=-1, type=int)
parser.add_argument('--train_split', default=1.0, type=float)
parser.add_argument('--val_split', default=0.0, type=float)
parser.add_argument('--test_split', default=0.0, type=float)
parser.add_argument('--shuffle_train',
default=False, action="store_true")
parser.add_argument('--resample_train',
default=False, action="store_true")
parser.add_argument('--shuffle_num', default=None, type=int)
parser.add_argument('--test_prompts', type=str,
default="./test_prompts.json")
parser.add_argument('--test_repeat', default=1, type=int)
parser.add_argument('--shuffle_cat', default=False,
action="store_true")
parser.add_argument(
"--resolution", type=int, default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", default=False,
help="Whether to center crop images before resizing to resolution"
)
return parent_args
def __init__(
self,
args,
tokenizer=None,
collate_fn=None,
use_worker_init_fn=None,
):
super().__init__()
# self.available_shards = list(range(args.start_shard, args.end_shard + 1))
# if splits is None:
# splits = []
splits = {
'train': args.train_split,
'val': args.val_split,
'test': args.test_split,
}
self.webdataset_base_urls = args.webdataset_base_urls
self.num_workers = args.num_workers
self.batch_size = args.batch_size
self.shuffle_train = args.shuffle_train
self.resample_train = args.resample_train
self.shard_width = args.shard_width
self.hr_size = args.hr_size
self.use_worker_init_fn = use_worker_init_fn
self.shuffle_num = args.shuffle_num
self.tokenizer = tokenizer
self.collate_fn = collate_fn
self.center_crop = args.center_crop
self.resolution = args.resolution
self.shuffle_cat = args.shuffle_cat,
self.train_prop = self.val_prop = self.test_prop = 0
self.datasets = {}
if splits['train'] > 0:
self.train_prop = splits['train']
self.train_dataloader = self._train_dataloader
self.datasets['train'] = None
if splits['val'] > 0:
self.val_prop = splits['val']
self.val_dataloader = self._val_dataloader
self.datasets['val'] = None
if splits['test'] > 0:
self.test_prop = splits['test']
self.test_dataloader = self._test_dataloader
self.datasets['test'] = None
self.prepare_data()
self.setup()
def prepare_data(self):
assert self.train_prop + self.test_prop + self.val_prop == 1
all_urls = []
for url in self.webdataset_base_urls:
all_urls += expand_urls(url)
num_train = round(self.train_prop*len(all_urls))
num_test = round(self.test_prop*len(all_urls))
num_val = len(all_urls) - num_train - num_test
assert num_train + num_test + \
num_val == len(
all_urls), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(all_urls)}"
self.train_urls, self.test_urls, self.val_urls = random_split(
all_urls, [num_train, num_test, num_val]) # , generator=torch.Generator().manual_seed(self.seed)
def setup(self, stage=None):
if 'train' in self.datasets:
self.datasets['train'] = ImageEmbeddingDataset(
self.train_urls,
self.tokenizer,
shuffle_shards=self.shuffle_train,
resample=self.resample_train,
hr_size=self.hr_size,
handler=wds.handlers.warn_and_continue,
center_crop=self.center_crop,
size=self.resolution,
shuffle_cat=self.shuffle_cat,
)
if self.shuffle_num is not None and self.shuffle_num > 0:
self.datasets['train'].shuffle(self.shuffle_num)
if 'val' in self.datasets:
self.datasets['val'] = ImageEmbeddingDataset(
self.val_urls,
self.tokenizer,
shuffle_shards=False,
resample=False,
hr_size=self.hr_size,
handler=wds.handlers.warn_and_continue,
center_crop=self.center_crop,
size=self.resolution,
shuffle_cat=self.shuffle_cat,
)
if 'test' in self.datasets:
self.datasets['test'] = ImageEmbeddingDataset(
self.test_urls,
self.tokenizer,
shuffle_shards=False,
resample=False,
hr_size=self.hr_size,
handler=wds.handlers.warn_and_continue,
center_crop=self.center_crop,
size=self.resolution,
shuffle_cat=self.shuffle_cat,
)
def _train_dataloader(self):
# return self.create_dataloader(self.train_urls, shuffle=self.shuffle_train, resample=self.resample_train)
if self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoaderX(
self.datasets['train'],
num_workers=self.num_workers,
batch_size=self.batch_size,
prefetch_factor=2, # This might be good to have high so the next npy file is prefetched
pin_memory=True,
shuffle=False,
worker_init_fn=init_fn,
collate_fn=self.collate_fn,
)
def _val_dataloader(self, shuffle=False):
# return self.create_dataloader(self.val_urls, shuffle=False)
if self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoaderX(
self.datasets['val'],
num_workers=self.num_workers,
batch_size=self.batch_size,
prefetch_factor=2, # This might be good to have high so the next npy file is prefetched
pin_memory=True,
shuffle=False,
worker_init_fn=init_fn,
collate_fn=self.collate_fn,
)
def _test_dataloader(self, shuffle=False):
# return self.create_dataloader(self.test_urls, shuffle=False)
if self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoaderX(
self.datasets['test'],
num_workers=self.num_workers,
batch_size=self.batch_size,
prefetch_factor=2, # This might be good to have high so the next npy file is prefetched
pin_memory=True,
shuffle=False,
worker_init_fn=init_fn,
collate_fn=self.collate_fn,
)
if __name__ == '__main__':
url = "/public_data/ma/data_process/aesthetics_tar_sam/{}.tar"
available_shards = list(range(120, 121))
tokenizer = CLIPTokenizer.from_pretrained(
"/public_data/wrc/models/stable-diffusion-v1-5", subfolder="tokenizer")
# available_shards = list(range(1919,1920))
urls = [url.format(str(shard).zfill(5)) for shard in available_shards]
ds = ImageEmbeddingDataset(
urls,
shuffle_shards=True,
resample=False,
hr_size=512,
tokenizer=tokenizer,
handler=wds.handlers.warn_and_continue
)
loader = DataLoaderX(
ds,
num_workers=1,
batch_size=1,
prefetch_factor=2, # This might be good to have high so the next npy file is prefetched
pin_memory=True,
shuffle=False,
collate_fn=collate_fn
)
cnt = []
from collections import Counter
for i, batch in tqdm(enumerate(loader)):
masks = batch["masks"][0]
cnt.append(len(masks))
print(Counter(cnt))