-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathquantum_filters.jl
43 lines (41 loc) · 1.56 KB
/
quantum_filters.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
include("dkk17.jl")
function rcov_quantum_filter(reps, eps, k, α=4, τ=0.1; limit1=2, limit2=1.5)
d, n = size(reps)
reps_pca, U = pca(reps, k)
if k == 1
reps_estimated_white = reps_pca
Σ′ = ones(1, 1)
else
selected = cov_estimation_iterate(reps_pca, eps/n, τ, nothing, limit=round(Int, limit1*eps))
reps_pca_selected = reps_pca[:, selected]
Σ = cov(reps_pca_selected', corrected=false)
reps_estimated_white = Σ^(-1/2)*reps_pca
Σ′ = cov(reps_estimated_white')
end
M = k > 1 ? exp(α*(Σ′- I)/(opnorm(Σ′) - 1)) : ones(1, 1)
M /= tr(M)
estimated_poison_ind = k_lowest_ind(
-[x'M*x for x in eachcol(reps_estimated_white)],
round(Int, limit2*eps)
)
return .! estimated_poison_ind
end
function rcov_auto_quantum_filter(reps, eps, α=4, τ=0.1; limit1=2, limit2=1.5)
reps_pca, U = pca(reps, 100)
best_opnorm, best_selected, best_k = -Inf, nothing, nothing
for k in round.(Int, range(1, sqrt(100), length=10) .^ 2)
selected = rcov_quantum_filter(reps, eps, k, α, τ; limit1=limit1, limit2=limit2)
Σ = cov(reps_pca[:, selected]')
Σ′ = cov((Σ^(-1/2)*reps_pca)')
M = exp(α*(Σ′- I)/(opnorm(Σ′) - 1))
M /= tr(M)
op = tr(Σ′ * M) / tr(M)
poison_removed = sum((.! selected)[end-eps+1:end])
@show k, op, poison_removed
if op > best_opnorm
best_opnorm, best_selected, best_k = op, selected, k
end
end
@show best_k, best_opnorm
return best_selected
end