-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
317 lines (257 loc) · 13.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import sys
import json
import argparse
import time
import numpy as np
import torch
torch.backends.cudnn.enabled = True
import torch.nn as nn
import torch.nn.functional as F
from configs.config import cfg, merge_cfg_from_file
from datasets.datasets import create_dataset
from models.modules import ChangeDetectorDoubleAttDyn, AddSpatialInfo
from models.dynamic_speaker import DynamicSpeaker
from utils.logger import Logger
from utils.utils import AverageMeter, accuracy, set_mode, save_checkpoint, \
LanguageModelCriterion, decode_sequence, decode_beams, \
build_optimizer, coco_gen_format_save, one_hot_encode, \
EntropyLoss
from utils.vis_utils import visualize_att
# Load config
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', required=True)
parser.add_argument('--visualize', action='store_true')
parser.add_argument('--entropy_weight', type=float, default=0.0)
parser.add_argument('--visualize_every', type=int, default=10)
args = parser.parse_args()
merge_cfg_from_file(args.cfg)
assert cfg.exp_name == os.path.basename(args.cfg).replace('.yaml', '')
# Device configuration
use_cuda = torch.cuda.is_available()
gpu_ids = cfg.gpu_id
torch.backends.cudnn.enabled = True
default_gpu_device = gpu_ids[0]
torch.cuda.set_device(default_gpu_device)
device = torch.device("cuda" if use_cuda else "cpu")
# Experiment configuration
exp_dir = cfg.exp_dir
exp_name = cfg.exp_name
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
output_dir = os.path.join(exp_dir, exp_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
cfg_file_save = os.path.join(output_dir, 'cfg.json')
json.dump(cfg, open(cfg_file_save, 'w'))
sample_dir = os.path.join(output_dir, 'eval_gen_samples')
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
sample_subdir_format = '%s_samples_%d'
sent_dir = os.path.join(output_dir, 'eval_sents')
if not os.path.exists(sent_dir):
os.makedirs(sent_dir)
sent_subdir_format = '%s_sents_%d'
snapshot_dir = os.path.join(output_dir, 'snapshots')
if not os.path.exists(snapshot_dir):
os.makedirs(snapshot_dir)
snapshot_file_format = '%s_checkpoint_%d.pt'
train_logger = Logger(cfg, output_dir, is_train=True)
val_logger = Logger(cfg, output_dir, is_train=False)
# Create model
change_detector = ChangeDetectorDoubleAttDyn(cfg)
change_detector.to(device)
speaker = DynamicSpeaker(cfg)
speaker.to(device)
spatial_info = AddSpatialInfo()
spatial_info.to(device)
print(change_detector)
print(speaker)
print(spatial_info)
with open(os.path.join(output_dir, 'model_print'), 'w') as f:
print(change_detector, file=f)
print(speaker, file=f)
print(spatial_info, file=f)
# Data loading part
train_dataset, train_loader = create_dataset(cfg, 'train')
val_dataset, val_loader = create_dataset(cfg, 'val')
train_size = len(train_dataset)
val_size = len(val_dataset)
# Define loss function and optimizer
lang_criterion = LanguageModelCriterion().to(device)
entropy_criterion = EntropyLoss().to(device)
all_params = list(change_detector.parameters()) + list(speaker.parameters())
optimizer = build_optimizer(all_params, cfg)
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size=cfg.train.optim.step_size,
gamma=cfg.train.optim.gamma)
# Train loop
t = 0
epoch = 0
set_mode('train', [change_detector, speaker])
ss_prob = speaker.ss_prob
while t < cfg.train.max_iter:
epoch += 1
print('Starting epoch %d' % epoch)
lr_scheduler.step()
speaker_loss_avg = AverageMeter()
total_loss_avg = AverageMeter()
if epoch > cfg.train.scheduled_sampling_start and cfg.train.scheduled_sampling_start >= 0:
frac = (epoch - cfg.train.scheduled_sampling_start) // cfg.train.scheduled_sampling_increase_every
ss_prob_prev = ss_prob
ss_prob = min(cfg.train.scheduled_sampling_increase_prob * frac,
cfg.train.scheduled_sampling_max_prob)
speaker.ss_prob = ss_prob
if ss_prob_prev != ss_prob:
print('Updating scheduled sampling rate: %.4f -> %.4f' % (ss_prob_prev, ss_prob))
for i, batch in enumerate(train_loader):
iter_start_time = time.time()
d_feats, nsc_feats, sc_feats, \
labels, no_chg_labels, masks, no_chg_masks, aux_labels_pos, aux_labels_neg, \
d_img_paths, nsc_img_paths, sc_img_paths = batch
batch_size = d_feats.size(0)
labels = labels.squeeze(1)
no_chg_labels = no_chg_labels.squeeze(1)
masks = masks.squeeze(1).float()
no_chg_masks = no_chg_masks.squeeze(1).float()
d_feats, nsc_feats, sc_feats = d_feats.to(device), nsc_feats.to(device), sc_feats.to(device)
d_feats, nsc_feats, sc_feats = \
spatial_info(d_feats), spatial_info(nsc_feats), spatial_info(sc_feats)
labels, masks = labels.to(device), masks.to(device)
no_chg_labels, no_chg_masks = no_chg_labels.to(device), no_chg_masks.to(device)
aux_labels_pos, aux_labels_neg = aux_labels_pos.to(device), aux_labels_neg.to(device)
optimizer.zero_grad()
chg_pos_logits, chg_pos_att_bef, chg_pos_att_aft, \
chg_pos_feat_bef, chg_pos_feat_aft, chg_pos_feat_diff = change_detector(d_feats, sc_feats)
chg_neg_logits, chg_neg_att_bef, chg_neg_att_aft, \
chg_neg_feat_bef, chg_neg_feat_aft, chg_neg_feat_diff = change_detector(d_feats, nsc_feats)
speaker_output_pos = speaker._forward(chg_pos_feat_bef,
chg_pos_feat_aft,
chg_pos_feat_diff,
labels)
dynamic_atts = speaker.get_module_weights() # (batch, seq_len, 3)
speaker_output_neg = speaker._forward(chg_neg_feat_bef,
chg_neg_feat_aft,
chg_neg_feat_diff,
no_chg_labels)
speaker_loss = 0.5 * lang_criterion(speaker_output_pos, labels[:, 1:], masks[:, 1:]) + \
0.5 * lang_criterion(speaker_output_neg, no_chg_labels[:, 1:], no_chg_masks[:, 1:])
speaker_loss_val = speaker_loss.item()
entropy_loss = -args.entropy_weight * entropy_criterion(dynamic_atts, masks[:, 1:])
att_sum = (chg_pos_att_bef.sum() + chg_pos_att_aft.sum()) / (2 * batch_size)
total_loss = speaker_loss + 2.5e-03 * att_sum + entropy_loss
total_loss_val = total_loss.item()
speaker_loss_avg.update(speaker_loss_val, 2 * batch_size)
total_loss_avg.update(total_loss_val, 2 * batch_size)
stats = {}
stats['entropy_loss'] = entropy_loss.item()
stats['speaker_loss'] = speaker_loss_val
stats['avg_speaker_loss'] = speaker_loss_avg.avg
stats['total_loss'] = total_loss_val
stats['avg_total_loss'] = total_loss_avg.avg
#results, sample_logprobs = model(d_feats, q_feats, labels, cfg=cfg, mode='sample')
total_loss.backward()
optimizer.step()
iter_end_time = time.time() - iter_start_time
t += 1
if t % cfg.train.log_interval == 0:
train_logger.print_current_stats(epoch, i, t, stats, iter_end_time)
train_logger.plot_current_stats(
epoch,
float(i * batch_size) / train_size, stats, 'loss')
if t % cfg.train.snapshot_interval == 0:
speaker_state = speaker.state_dict()
chg_det_state = change_detector.state_dict()
checkpoint = {
'change_detector_state': chg_det_state,
'speaker_state': speaker_state,
'model_cfg': cfg
}
save_path = os.path.join(snapshot_dir,
snapshot_file_format % (exp_name, t))
save_checkpoint(checkpoint, save_path)
print('Running eval at iter %d' % t)
set_mode('eval', [change_detector, speaker])
with torch.no_grad():
test_iter_start_time = time.time()
idx_to_word = train_dataset.get_idx_to_word()
if args.visualize:
sample_subdir_path = sample_subdir_format % (exp_name, t)
sample_save_dir = os.path.join(sample_dir, sample_subdir_path)
if not os.path.exists(sample_save_dir):
os.makedirs(sample_save_dir)
sent_subdir_path = sent_subdir_format % (exp_name, t)
sent_save_dir = os.path.join(sent_dir, sent_subdir_path)
if not os.path.exists(sent_save_dir):
os.makedirs(sent_save_dir)
result_sents_pos = {}
result_sents_neg = {}
for val_i, val_batch in enumerate(val_loader):
d_feats, nsc_feats, sc_feats, \
labels, no_chg_labels, masks, no_chg_masks, aux_labels_pos, aux_labels_neg, \
d_img_paths, nsc_img_paths, sc_img_paths = val_batch
val_batch_size = d_feats.size(0)
d_feats, nsc_feats, sc_feats = d_feats.to(device), nsc_feats.to(device), sc_feats.to(device)
d_feats, nsc_feats, sc_feats = \
spatial_info(d_feats), spatial_info(nsc_feats), spatial_info(sc_feats)
labels, masks = labels.to(device), masks.to(device)
no_chg_labels, no_chg_masks = no_chg_labels.to(device), no_chg_masks.to(device)
aux_labels_pos, aux_labels_neg = aux_labels_pos.to(device), aux_labels_neg.to(device)
chg_pos_logits, chg_pos_att_bef, chg_pos_att_aft, \
chg_pos_feat_bef, chg_pos_feat_aft, chg_pos_feat_diff = change_detector(d_feats, sc_feats)
chg_neg_logits, chg_neg_att_bef, chg_neg_att_aft, \
chg_neg_feat_bef, chg_neg_feat_aft, chg_neg_feat_diff = change_detector(d_feats, nsc_feats)
speaker_output_pos, _ = speaker._sample(chg_pos_feat_bef,
chg_pos_feat_aft,
chg_pos_feat_diff,
labels, cfg)
pos_dynamic_atts = speaker.get_module_weights().detach().cpu().numpy() # (batch, seq_len, 3)
speaker_output_neg, _ = speaker._sample(chg_neg_feat_bef,
chg_neg_feat_aft,
chg_neg_feat_diff,
no_chg_labels, cfg)
neg_dynamic_atts = speaker.get_module_weights().detach().cpu().numpy() # (batch, seq_len, 3)
gen_sents_pos = decode_sequence(idx_to_word, speaker_output_pos)
gen_sents_neg = decode_sequence(idx_to_word, speaker_output_neg)
chg_pos_att_bef = chg_pos_att_bef.cpu().numpy()
chg_pos_att_aft = chg_pos_att_aft.cpu().numpy()
chg_neg_att_bef = chg_neg_att_bef.cpu().numpy()
chg_neg_att_aft = chg_neg_att_aft.cpu().numpy()
dummy = np.ones_like(chg_pos_att_bef)
for val_j in range(speaker_output_pos.size(0)):
gts = decode_sequence(idx_to_word, labels[val_j][:, 1:])
gts_neg = decode_sequence(idx_to_word, no_chg_labels[val_j][:, 1:])
if args.visualize and val_j % args.visualize_every == 0:
visualize_att(d_img_paths[val_j], sc_img_paths[val_j],
chg_pos_att_bef[val_j], dummy[val_j], chg_pos_att_aft[val_j],
pos_dynamic_atts[val_j], gen_sents_pos[val_j], gts,
-1, -1, sample_save_dir, 'sc_')
visualize_att(d_img_paths[val_j], nsc_img_paths[val_j],
chg_neg_att_bef[val_j], dummy[val_j], chg_neg_att_aft[val_j],
neg_dynamic_atts[val_j], gen_sents_neg[val_j], gts_neg,
-1, -1, sample_save_dir, 'nsc_')
sent_pos = gen_sents_pos[val_j]
sent_neg = gen_sents_neg[val_j]
image_id = d_img_paths[val_j].split('_')[-1]
result_sents_pos[image_id] = sent_pos
result_sents_neg[image_id + '_n'] = sent_neg
message = '%s results:\n' % d_img_paths[val_j]
message += '\t' + sent_pos + '\n'
message += '----------<GROUND TRUTHS>----------\n'
for gt in gts:
message += gt + '\n'
message += '===================================\n'
message += '%s results:\n' % nsc_img_paths[val_j]
message += '\t' + sent_neg + '\n'
message += '----------<GROUND TRUTHS>----------\n'
for gt in gts_neg:
message += gt + '\n'
message += '===================================\n'
print(message)
test_iter_end_time = time.time() - test_iter_start_time
result_save_path_pos = os.path.join(sent_save_dir, 'sc_results.json')
result_save_path_neg = os.path.join(sent_save_dir, 'nsc_results.json')
coco_gen_format_save(result_sents_pos, result_save_path_pos)
coco_gen_format_save(result_sents_neg, result_save_path_neg)
set_mode('train', [change_detector, speaker])