From f0a2b2ae0e1b027df2fa9f854fa10355c1d2e1b7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Nicolas=20H=C3=B6ning?= Date: Fri, 1 Mar 2024 10:03:37 +0100 Subject: [PATCH] black MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Nicolas Höning --- timely_beliefs/beliefs/classes.py | 23 ++++++++--------------- 1 file changed, 8 insertions(+), 15 deletions(-) diff --git a/timely_beliefs/beliefs/classes.py b/timely_beliefs/beliefs/classes.py index 725c5361..2027104d 100644 --- a/timely_beliefs/beliefs/classes.py +++ b/timely_beliefs/beliefs/classes.py @@ -191,7 +191,7 @@ def __table_args__(cls): "source_id", postgresql_include=[ "belief_horizon", # we use min() on this - ] + ], ), ) @@ -1162,16 +1162,12 @@ def _for_each_belief( index_names.extend( ["event_start"] if "event_start" in df.index.names - else ["event_end"] - if "event_end" in df.index.names - else [] + else ["event_end"] if "event_end" in df.index.names else [] ) index_names.extend( ["belief_time"] if "belief_time" in df.index.names - else ["belief_horizon"] - if "belief_horizon" in df.index.names - else [] + else ["belief_horizon"] if "belief_horizon" in df.index.names else [] ) if collective_beliefs is False: index_names.append("source") @@ -1490,9 +1486,9 @@ def resample_events( column_functions = { "event_value": "mean", "source": "first", # keep the only source - belief_timing_col: "max" - if belief_timing_col == "belief_time" - else "min", # keep only most recent belief + belief_timing_col: ( + "max" if belief_timing_col == "belief_time" else "min" + ), # keep only most recent belief "cumulative_probability": "mean", # we just have one point on each CDF } df = downsample_beliefs_data_frame( @@ -1549,8 +1545,7 @@ def form_beliefs( belief_time: datetime, source: BeliefSource, event_start: datetime = None, - event_time_window: tuple[datetime, datetime] - | None = ( + event_time_window: tuple[datetime, datetime] | None = ( None, None, ), @@ -2111,9 +2106,7 @@ def assign_sensor_and_event_resolution(df, sensor, event_resolution): df.event_resolution = ( event_resolution if event_resolution - else sensor.event_resolution - if sensor - else None + else sensor.event_resolution if sensor else None )