-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathevaluation.py
552 lines (451 loc) · 21.3 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
"""
Copyright (c) 2020-present NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import argparse
import cv2
import numpy as np
import os
from os.path import join as ospj
import torch.utils.data as torchdata
from config import str2bool
from data_loaders import configure_metadata
from data_loaders import get_image_ids
from data_loaders import get_bounding_boxes
from data_loaders import get_image_sizes
from data_loaders import get_mask_paths
from util import check_scoremap_validity
from util import check_box_convention
from util import t2n
import pdb
_IMAGENET_MEAN = [0.485, .456, .406]
_IMAGENET_STDDEV = [.229, .224, .225]
# _IMAGE_MEAN_VALUE = [0.5, 0.5, 0.5]
# _IMAGE_STD_VALUE = [0.5, 0.5, 0.5]
_RESIZE_LENGTH = 224
_CONTOUR_INDEX = 1 if cv2.__version__.split('.')[0] == '3' else 0
def calculate_multiple_iou(box_a, box_b):
"""
Args:
box_a: numpy.ndarray(dtype=np.int, shape=(num_a, 4))
x0y0x1y1 convention.
box_b: numpy.ndarray(dtype=np.int, shape=(num_b, 4))
x0y0x1y1 convention.
Returns:
ious: numpy.ndarray(dtype=np.int, shape(num_a, num_b))
"""
num_a = box_a.shape[0]
num_b = box_b.shape[0]
check_box_convention(box_a, 'x0y0x1y1')
check_box_convention(box_b, 'x0y0x1y1')
# num_a x 4 -> num_a x num_b x 4
box_a = np.tile(box_a, num_b)
box_a = np.expand_dims(box_a, axis=1).reshape((num_a, num_b, -1))
# num_b x 4 -> num_b x num_a x 4
box_b = np.tile(box_b, num_a)
box_b = np.expand_dims(box_b, axis=1).reshape((num_b, num_a, -1))
# num_b x num_a x 4 -> num_a x num_b x 4
box_b = np.transpose(box_b, (1, 0, 2))
# num_a x num_b
min_x = np.maximum(box_a[:, :, 0], box_b[:, :, 0])
min_y = np.maximum(box_a[:, :, 1], box_b[:, :, 1])
max_x = np.minimum(box_a[:, :, 2], box_b[:, :, 2])
max_y = np.minimum(box_a[:, :, 3], box_b[:, :, 3])
# num_a x num_b
area_intersect = (np.maximum(0, max_x - min_x + 1)
* np.maximum(0, max_y - min_y + 1))
area_a = ((box_a[:, :, 2] - box_a[:, :, 0] + 1) *
(box_a[:, :, 3] - box_a[:, :, 1] + 1))
area_b = ((box_b[:, :, 2] - box_b[:, :, 0] + 1) *
(box_b[:, :, 3] - box_b[:, :, 1] + 1))
denominator = area_a + area_b - area_intersect
degenerate_indices = np.where(denominator <= 0)
denominator[degenerate_indices] = 1
ious = area_intersect / denominator
ious[degenerate_indices] = 0
return ious
def resize_bbox(box, image_size, resize_size):
"""
Args:
box: iterable (ints) of length 4 (x0, y0, x1, y1)
image_size: iterable (ints) of length 2 (width, height)
resize_size: iterable (ints) of length 2 (width, height)
Returns:
new_box: iterable (ints) of length 4 (x0, y0, x1, y1)
"""
check_box_convention(np.array(box), 'x0y0x1y1')
box_x0, box_y0, box_x1, box_y1 = map(float, box)
image_w, image_h = map(float, image_size)
new_image_w, new_image_h = map(float, resize_size)
newbox_x0 = box_x0 * new_image_w / image_w
newbox_y0 = box_y0 * new_image_h / image_h
newbox_x1 = box_x1 * new_image_w / image_w
newbox_y1 = box_y1 * new_image_h / image_h
return int(newbox_x0), int(newbox_y0), int(newbox_x1), int(newbox_y1)
def compute_bboxes_from_scoremaps(scoremap, scoremap_threshold_list,
multi_contour_eval=False):
"""
Args:
scoremap: numpy.ndarray(dtype=np.float32, size=(H, W)) between 0 and 1
scoremap_threshold_list: iterable
multi_contour_eval: flag for multi-contour evaluation
Returns:
estimated_boxes_at_each_thr: list of estimated boxes (list of np.array)
at each cam threshold
number_of_box_list: list of the number of boxes at each cam threshold
"""
check_scoremap_validity(scoremap)
height, width = scoremap.shape
scoremap_image = np.expand_dims((scoremap * 255).astype(np.uint8), 2)
def scoremap2bbox(threshold):
_, thr_gray_heatmap = cv2.threshold(
src=scoremap_image,
thresh=int(threshold * np.max(scoremap_image)),
maxval=255,
type=cv2.THRESH_BINARY)
contours = cv2.findContours(
image=thr_gray_heatmap,
mode=cv2.RETR_TREE,
method=cv2.CHAIN_APPROX_SIMPLE)[_CONTOUR_INDEX]
if len(contours) == 0:
return np.asarray([[0, 0, 0, 0]]), 1
if not multi_contour_eval:
contours = [max(contours, key=cv2.contourArea)]
estimated_boxes = []
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
x0, y0, x1, y1 = x, y, x + w, y + h
x1 = min(x1, width - 1)
y1 = min(y1, height - 1)
estimated_boxes.append([x0, y0, x1, y1])
return np.asarray(estimated_boxes), len(contours)
estimated_boxes_at_each_thr = []
number_of_box_list = []
for threshold in scoremap_threshold_list:
boxes, number_of_box = scoremap2bbox(threshold)
estimated_boxes_at_each_thr.append(boxes)
number_of_box_list.append(number_of_box)
return estimated_boxes_at_each_thr, number_of_box_list
class CamDataset(torchdata.Dataset):
def __init__(self, scoremap_path, image_ids):
self.scoremap_path = scoremap_path
self.image_ids = image_ids
def _load_cam(self, image_id):
scoremap_file = os.path.join(self.scoremap_path, image_id + '.npy')
return np.load(scoremap_file)
# score_map1 = os.path.join(self.scoremap_path, image_id)
# score_map1 = cv2.imread(score_map1, cv2.IMREAD_GRAYSCALE)
# score_map1 = (score_map1 - score_map1.min()) / (score_map1.max() - score_map1.min())
return score_map1
def __getitem__(self, index):
image_id = self.image_ids[index]
cam = self._load_cam(image_id)
return cam, image_id
def __len__(self):
return len(self.image_ids)
class LocalizationEvaluator(object):
""" Abstract class for localization evaluation over score maps.
The class is designed to operate in a for loop (e.g. batch-wise cam
score map computation). At initialization, __init__ registers paths to
annotations and data containers for evaluation. At each iteration,
each score map is passed to the accumulate() method along with its image_id.
After the for loop is finalized, compute() is called to compute the final
localization performance.
"""
def __init__(self, metadata, dataset_name, split, cam_threshold_list,
iou_threshold_list, mask_root, multi_contour_eval):
self.metadata = metadata
self.cam_threshold_list = cam_threshold_list
self.iou_threshold_list = iou_threshold_list
self.dataset_name = dataset_name
self.split = split
self.mask_root = mask_root
self.multi_contour_eval = multi_contour_eval
def accumulate(self, scoremap, image_id):
raise NotImplementedError
def compute(self):
raise NotImplementedError
class BoxEvaluator(LocalizationEvaluator):
def __init__(self, **kwargs):
super(BoxEvaluator, self).__init__(**kwargs)
self.image_ids = get_image_ids(metadata=self.metadata)
self.resize_length = _RESIZE_LENGTH
self.cnt = 0
self.num_correct = \
{iou_threshold: np.zeros(len(self.cam_threshold_list))
for iou_threshold in self.iou_threshold_list}
self.original_bboxes = get_bounding_boxes(self.metadata)
self.image_sizes = get_image_sizes(self.metadata)
self.gt_bboxes = self._load_resized_boxes(self.original_bboxes)
self.top1_correct = np.zeros(len(self.cam_threshold_list))
def _load_resized_boxes(self, original_bboxes):
resized_bbox = {image_id: [
resize_bbox(bbox, self.image_sizes[image_id],
(self.resize_length, self.resize_length))
for bbox in original_bboxes[image_id]]
for image_id in self.image_ids}
return resized_bbox
def accumulate(self, scoremap, image_id, classification_flag):
"""
From a score map, a box is inferred (compute_bboxes_from_scoremaps).
The box is compared against GT boxes. Count a scoremap as a correct
prediction if the IOU against at least one box is greater than a certain
threshold (_IOU_THRESHOLD).
Args:
scoremap: numpy.ndarray(size=(H, W), dtype=np.float)
image_id: string.
"""
boxes_at_thresholds, number_of_box_list = compute_bboxes_from_scoremaps(
scoremap=scoremap,
scoremap_threshold_list=self.cam_threshold_list,
multi_contour_eval=self.multi_contour_eval)
boxes_at_thresholds = np.concatenate(boxes_at_thresholds, axis=0)
multiple_iou = calculate_multiple_iou(
np.array(boxes_at_thresholds),
np.array(self.gt_bboxes[image_id]))
idx = 0
sliced_multiple_iou = []
for nr_box in number_of_box_list:
sliced_multiple_iou.append(
max(multiple_iou.max(1)[idx:idx + nr_box]))
idx += nr_box
for _THRESHOLD in self.iou_threshold_list:
correct_threshold_indices = \
np.where(np.asarray(sliced_multiple_iou) >= (_THRESHOLD/100))[0]
self.num_correct[_THRESHOLD][correct_threshold_indices] += 1
if classification_flag:
correct_threshold_indices = np.where(np.asarray(sliced_multiple_iou) >= 0.5)[0]
self.top1_correct[correct_threshold_indices] +=1
self.cnt += 1
def compute(self):
"""
Returns:
max_localization_accuracy: float. The ratio of images where the
box prediction is correct. The best scoremap threshold is taken
for the final performance.
"""
max_box_acc = []
for _THRESHOLD in self.iou_threshold_list:
localization_accuracies = self.num_correct[_THRESHOLD] * 100. / \
float(self.cnt)
max_box_acc.append(localization_accuracies.max())
top1_loc_acc = ((self.top1_correct * 100.) / float(self.cnt)).max()
optimal_cam_thresold = self.cam_threshold_list[np.argmax(self.top1_correct)]
print("Cam threshold: {}".format(optimal_cam_thresold))
print("Number of images evaluated: {}".format(self.cnt))
return max_box_acc, top1_loc_acc
def load_mask_image(file_path, resize_size):
"""
Args:
file_path: string.
resize_size: tuple of ints (height, width)
Returns:
mask: numpy.ndarray(dtype=numpy.float32, shape=(height, width))
"""
mask = np.float32(cv2.imread(file_path, cv2.IMREAD_GRAYSCALE))
mask = cv2.resize(mask, resize_size, interpolation=cv2.INTER_NEAREST)
return mask
def get_mask(mask_root, mask_paths, ignore_path):
"""
Ignore mask is set as the ignore box region \setminus the ground truth
foreground region.
Args:
mask_root: string.
mask_paths: iterable of strings.
ignore_path: string.
Returns:
mask: numpy.ndarray(size=(224, 224), dtype=np.uint8)
"""
mask_all_instances = []
for mask_path in mask_paths:
mask_file = os.path.join(mask_root, mask_path)
mask = load_mask_image(mask_file, (_RESIZE_LENGTH, _RESIZE_LENGTH))
mask_all_instances.append(mask > 0.5)
mask_all_instances = np.stack(mask_all_instances, axis=0).any(axis=0)
ignore_file = os.path.join(mask_root, ignore_path)
ignore_box_mask = load_mask_image(ignore_file,
(_RESIZE_LENGTH, _RESIZE_LENGTH))
ignore_box_mask = ignore_box_mask > 0.5
ignore_mask = np.logical_and(ignore_box_mask,
np.logical_not(mask_all_instances))
if np.logical_and(ignore_mask, mask_all_instances).any():
raise RuntimeError("Ignore and foreground masks intersect.")
return (mask_all_instances.astype(np.uint8) +
255 * ignore_mask.astype(np.uint8))
class MaskEvaluator(LocalizationEvaluator):
def __init__(self, **kwargs):
super(MaskEvaluator, self).__init__(**kwargs)
if self.dataset_name != "OpenImages":
raise ValueError("Mask evaluation must be performed on OpenImages.")
self.mask_paths, self.ignore_paths = get_mask_paths(self.metadata)
# cam_threshold_list is given as [0, bw, 2bw, ..., 1-bw]
# Set bins as [0, bw), [bw, 2bw), ..., [1-bw, 1), [1, 2), [2, 3)
self.num_bins = len(self.cam_threshold_list) + 2
self.threshold_list_right_edge = np.append(self.cam_threshold_list,
[1.0, 2.0, 3.0])
self.gt_true_score_hist = np.zeros(self.num_bins, dtype=np.float)
self.gt_false_score_hist = np.zeros(self.num_bins, dtype=np.float)
def accumulate(self, scoremap, image_id):
"""
Score histograms over the score map values at GT positive and negative
pixels are computed.
Args:
scoremap: numpy.ndarray(size=(H, W), dtype=np.float)
image_id: string.
"""
check_scoremap_validity(scoremap)
gt_mask = get_mask(self.mask_root,
self.mask_paths[image_id],
self.ignore_paths[image_id])
gt_true_scores = scoremap[gt_mask == 1]
gt_false_scores = scoremap[gt_mask == 0]
# histograms in ascending order
gt_true_hist, _ = np.histogram(gt_true_scores,
bins=self.threshold_list_right_edge)
self.gt_true_score_hist += gt_true_hist.astype(np.float)
gt_false_hist, _ = np.histogram(gt_false_scores,
bins=self.threshold_list_right_edge)
self.gt_false_score_hist += gt_false_hist.astype(np.float)
def compute(self):
"""
Arrays are arranged in the following convention (bin edges):
gt_true_score_hist: [0.0, eps), ..., [1.0, 2.0), [2.0, 3.0)
gt_false_score_hist: [0.0, eps), ..., [1.0, 2.0), [2.0, 3.0)
tp, fn, tn, fp: >=2.0, >=1.0, ..., >=0.0
Returns:
auc: float. The area-under-curve of the precision-recall curve.
Also known as average precision (AP).
"""
num_gt_true = self.gt_true_score_hist.sum()
tp = self.gt_true_score_hist[::-1].cumsum()
fn = num_gt_true - tp
num_gt_false = self.gt_false_score_hist.sum()
fp = self.gt_false_score_hist[::-1].cumsum()
tn = num_gt_false - fp
if ((tp + fn) <= 0).all():
raise RuntimeError("No positive ground truth in the eval set.")
if ((tp + fp) <= 0).all():
raise RuntimeError("No positive prediction in the eval set.")
non_zero_indices = (tp + fp) != 0
precision = tp / (tp + fp)
recall = tp / (tp + fn)
auc = (precision[1:] * np.diff(recall))[non_zero_indices[1:]].sum()
auc *= 100
print("Mask AUC on split {}: {}".format(self.split, auc))
return auc
def _get_cam_loader(image_ids, scoremap_path):
return torchdata.DataLoader(
CamDataset(scoremap_path, image_ids),
batch_size=128,
shuffle=False,
num_workers=0,
pin_memory=True)
def evaluate_wsol(scoremap_root, metadata_root, mask_root, dataset_name, split,
multi_contour_eval, multi_iou_eval, iou_threshold_list,
cam_curve_interval=.001):
"""
Compute WSOL performances of predicted heatmaps against ground truth
boxes (CUB, ILSVRC) or masks (OpenImages). For boxes, we compute the
gt-known box accuracy (IoU>=0.5) at the optimal heatmap threshold.
For masks, we compute the area-under-curve of the pixel-wise precision-
recall curve.
Args:
scoremap_root: string. Score maps for each eval image are saved under
the output_path, with the name corresponding to their image_ids.
For example, the heatmap for the image "123/456.JPEG" is expected
to be located at "{output_path}/123/456.npy".
The heatmaps must be numpy arrays of type np.float, with 2
dimensions corresponding to height and width. The height and width
must be identical to those of the original image. The heatmap values
must be in the [0, 1] range. The map must attain values 0.0 and 1.0.
See check_scoremap_validity() in util.py for the exact requirements.
metadata_root: string.
mask_root: string.
dataset_name: string. Supports [CUB, ILSVRC, and OpenImages].
split: string. Supports [train, val, test].
multi_contour_eval: considering the best match between the set of all
estimated boxes and the set of all ground truth boxes.
multi_iou_eval: averaging the performance across various level of iou
thresholds.
iou_threshold_list: list. default: [30, 50, 70]
cam_curve_interval: float. Default 0.001. At which threshold intervals
will the heatmaps be evaluated?
Returns:
performance: float. For CUB and ILSVRC, maxboxacc is returned.
For OpenImages, area-under-curve of the precision-recall curve
is returned.
"""
print("Loading and evaluating cams.")
meta_path = os.path.join(metadata_root, dataset_name, split)
metadata = configure_metadata(meta_path)
image_ids = get_image_ids(metadata)
cam_threshold_list = list(np.arange(0, 1, cam_curve_interval))
evaluator = {"OpenImages": MaskEvaluator,
"CUB": BoxEvaluator,
"ILSVRC": BoxEvaluator
}[dataset_name](metadata=metadata,
dataset_name=dataset_name,
split=split,
cam_threshold_list=cam_threshold_list,
mask_root=ospj(mask_root, 'OpenImages'),
multi_contour_eval=multi_contour_eval,
iou_threshold_list=iou_threshold_list)
cam_loader = _get_cam_loader(image_ids, scoremap_root)
for cams, image_ids in cam_loader:
for cam, image_id in zip(cams, image_ids):
evaluator.accumulate(t2n(cam), image_id)
performance = evaluator.compute()
if multi_iou_eval or dataset_name == 'OpenImages':
performance = np.average(performance)
else:
performance = performance[iou_threshold_list.index(50)]
print('localization: {}'.format(performance))
return performance
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--scoremap_root', type=str,
default='train_log/scoremaps/',
help="The root folder for score maps to be evaluated.")
parser.add_argument('--metadata_root', type=str, default='metadata/',
help="Root folder of metadata.")
parser.add_argument('--mask_root', type=str, default='dataset/',
help="Root folder of masks (OpenImages).")
parser.add_argument('--dataset_name', type=str,
help="One of [CUB, ImageNet, OpenImages].")
parser.add_argument('--split', type=str,
help="One of [val, test]. They correspond to "
"train-fullsup and test, respectively.")
parser.add_argument('--cam_curve_interval', type=float, default=0.01,
help="At which threshold intervals will the score maps "
"be evaluated?.")
parser.add_argument('--multi_contour_eval', type=str2bool, nargs='?',
const=True, default=False)
parser.add_argument('--multi_iou_eval', type=str2bool, nargs='?',
const=True, default=False)
parser.add_argument('--iou_threshold_list', nargs='+',
type=int, default=[30, 50, 70])
args = parser.parse_args()
evaluate_wsol(scoremap_root=args.scoremap_root,
metadata_root=args.metadata_root,
mask_root=args.mask_root,
dataset_name=args.dataset_name,
split=args.split,
cam_curve_interval=args.cam_curve_interval,
multi_contour_eval=args.multi_contour_eval,
multi_iou_eval=args.multi_iou_eval,
iou_threshold_list=args.iou_threshold_list,)
if __name__ == "__main__":
main()