-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsang_utils.py
40 lines (33 loc) · 1.95 KB
/
sang_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import matplotlib.pyplot as plt
import torch
from torchvision import datasets, transforms
def get_celebA_loader(data_dir, batch_sizes, image_size):
# put image data into data_loader
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
data_dir = 'resized_celebA' # this path depends on your computer
dset = datasets.ImageFolder(data_dir, transform)
train_loader = torch.utils.data.DataLoader(dset, batch_size=batch_sizes, drop_last=True, shuffle=True)
# confrimed input image size!
temp = plt.imread(train_loader.dataset.imgs[0][0])
if (temp.shape[0] != image_size) or (temp.shape[0] != image_size):
raise ValueError('image size is not 64 x 64!')
return train_loader
def get_cifar10_loader(batch_sizes, image_size):
# put image data into data_loader
train_loader = torch.utils.data.DataLoader(datasets.CIFAR10("../../data/mnist",
train=True,
download=True,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])),
batch_size=batch_sizes, drop_last=True, shuffle=True)
# confrimed input image size!
temp = plt.imread(train_loader.dataset.imgs[0][0])
if (temp.shape[0] != image_size) or (temp.shape[0] != image_size):
raise ValueError('image size is not 64 x 64!')
return train_loader