-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathpreprocess.py
executable file
·272 lines (220 loc) · 10.2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import sys
import argparse
import wave
from multiprocessing import cpu_count
from concurrent.futures import ProcessPoolExecutor
from functools import partial
from utils import *
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import glob
from os.path import join, basename
import subprocess
def resample(spk_folder, sampling_rate, origin_wavpath, target_wavpath):
"""
Resample files to x frames and save to output dir.
:param spk_folder: speaker dir
:param sampling_rate: frame rate to resample to
:param origin_wavpath: root path of all speaker folders to resample
:param target_wavpath: root path of resampled speakers to output to
:return: None
"""
wavfiles = [i for i in os.listdir(join(origin_wavpath, spk_folder)) if i.endswith('.wav')]
for wav in wavfiles:
folder_to = join(target_wavpath, spk_folder)
os.makedirs(folder_to, exist_ok=True)
wav_to = join(folder_to, wav)
wav_from = join(origin_wavpath, spk_folder, wav)
subprocess.call(['sox', wav_from, '-r', str(sampling_rate), wav_to])
return None
def resample_to_xk(sampling_rate, origin_wavpath, target_wavpath, num_workers=1):
"""
Prepare folders for resmapling at x frames.
:param sampling_rate: frame rate to resample to
:param origin_wavpath: root path of all speaker folders to resample
:param target_wavpath: root path of resampled speakers to output to
:param num_workers: cpu workers
:return: None
"""
os.makedirs(target_wavpath, exist_ok=True)
spk_folders = os.listdir(origin_wavpath)
print(f'> Using {num_workers} workers!')
executor = ProcessPoolExecutor(max_workers=num_workers)
futures = []
for spk_folder in tqdm(spk_folders):
futures.append(executor.submit(partial(resample, spk_folder, sampling_rate, origin_wavpath, target_wavpath)))
result_list = [future.result() for future in tqdm(futures)]
print('Completed:')
print(result_list)
return None
def get_sampling_rate(file_name):
"""
Get the sampling rate of a wav file.
:param file_name: wav file path
:return: frame rate of wav file
"""
with wave.open(file_name, 'rb') as wave_file:
sample_rate = wave_file.getframerate()
return sample_rate
def split_data(paths):
"""
Split path data into train test split.
:param paths: all wav paths of a speaker dir.
:return: train wav paths, test wav paths
"""
indices = np.arange(len(paths))
test_size = 0.1
train_indices, test_indices = train_test_split(indices, test_size=test_size, random_state=1234)
train_paths = list(np.array(paths)[train_indices])
test_paths = list(np.array(paths)[test_indices])
return train_paths, test_paths
def get_spk_world_feats(spk_name, spk_paths, output_dir, sample_rate):
"""
Convert wav files to there MCEP features.
:param spk_name: name of speaker dir
:param spk_paths: paths of all wavs in speaker dir
:param output_dir: dir to output MCEPs to
:param sample_rate: frame rate of wav files
:return: None
"""
f0s = []
coded_sps = []
for wav_file in spk_paths:
f0, _, _, _, coded_sp = world_encode_wav(wav_file, fs=sample_rate)
f0s.append(f0)
coded_sps.append(coded_sp)
log_f0s_mean, log_f0s_std = logf0_statistics(f0s)
coded_sps_mean, coded_sps_std = coded_sp_statistics(coded_sps)
np.savez(join(output_dir, spk_name + '_stats.npz'),
log_f0s_mean=log_f0s_mean,
log_f0s_std=log_f0s_std,
coded_sps_mean=coded_sps_mean,
coded_sps_std=coded_sps_std)
for wav_file in tqdm(spk_paths):
wav_name = basename(wav_file)
_, _, _, _, coded_sp = world_encode_wav(wav_file, fs=sample_rate)
normalised_coded_sp = (coded_sp - coded_sps_mean) / coded_sps_std
np.save(os.path.join(output_dir, wav_name.replace('.wav', '.npy')),
normalised_coded_sp,
allow_pickle=False)
return None
def process_spk(spk_path, mc_dir):
"""
Prcoess speaker wavs to MCEPs
:param spk_path: path to speaker wav dir
:param mc_dir: output dir for speaker data
:return: None
"""
spk_paths = glob.glob(join(spk_path, '*.wav'))
# find the sampling rate of teh wav files you are about to convert
sample_rate = get_sampling_rate(spk_paths[0])
spk_name = basename(spk_path)
get_spk_world_feats(spk_name, spk_paths, mc_dir, sample_rate)
return None
def process_spk_with_split(spk_path, mc_dir_train, mc_dir_test):
"""
Perform train test split on a speaker and process wavs to MCEPs.
:param spk_path: path to speaker wav dir
:param mc_dir_train: output dir for speaker train data
:param mc_dir_test: output dir for speaker test data
:return: None
"""
spk_paths = glob.glob(join(spk_path, '*.wav'))
# find the samplng rate of the wav files you are about to convert
sample_rate = get_sampling_rate(spk_paths[0])
spk_name = basename(spk_path)
train_paths, test_paths = split_data(spk_paths)
get_spk_world_feats(spk_name, train_paths, mc_dir_train, sample_rate)
get_spk_world_feats(spk_name, test_paths, mc_dir_test, sample_rate)
return None
if __name__ == '__main__':
parser = argparse.ArgumentParser()
perform_data_split_default = 'y'
# If data_split needs to be peformed
origin_wavpath_default = "./data/VCTK-Corpus/wav48"
target_wavpath_default = "./data/VCTK-Corpus/wav16"
# If data_split does NOT need to be peformed
origin_wavpath_train_default = ''
origin_wavpath_eval_default = ''
target_wavpath_train_default = './data/VCC2018-Corpus/wav22_train'
target_wavpath_eval_default = './data/VCC2018-Corpus/wav22_eval'
# Location of processed mc files
mc_dir_train_default = './data/mc/train'
mc_dir_test_default = './data/mc/test'
# DATA SPLITTING.
parser.add_argument('--perform_data_split', choices=['y', 'n'], default=perform_data_split_default,
help='Perform random data split.')
# RESAMPLING.
parser.add_argument('--resample_rate', type=int, default=0, help='Resampling rate.')
# if performing a data split:
parser.add_argument('--origin_wavpath', type=str, default=origin_wavpath_default,
help='Original wavpath for resampling.')
parser.add_argument('--target_wavpath', type=str, default=target_wavpath_default,
help='Target wavpath for resampling.')
# if NOT performing a data split
parser.add_argument('--origin_wavpath_train', type=str, default=origin_wavpath_train_default,
help='Original wavpath for resampling train files.')
parser.add_argument('--origin_wavpath_eval', type=str, default=origin_wavpath_eval_default,
help='Original wavpath for resampling eval files.')
parser.add_argument('--target_wavpath_train', type=str, default=target_wavpath_train_default,
help='Target wavpath for resampling train files.')
parser.add_argument('--target_wavpath_eval', type=str, default=target_wavpath_eval_default,
help='Target wavpath for resampling eval files.')
# MCEP PREPROCESSING.
parser.add_argument('--mc_dir_train', type=str, default=mc_dir_train_default, help='Dir for training features.')
parser.add_argument('--mc_dir_test', type=str, default=mc_dir_test_default, help='Dir for testing features.')
parser.add_argument('--speakers', type=str, nargs='+', required=True, help='Speakers to be processed.')
parser.add_argument('--num_workers', type=int, default=None, help='Number of cpus to use.')
argv = parser.parse_args()
perform_data_split = argv.perform_data_split
resample_rate = argv.resample_rate
origin_wavpath = argv.origin_wavpath
target_wavpath = argv.target_wavpath
origin_wavpath_train = argv.origin_wavpath_train
origin_wavpath_eval = argv.origin_wavpath_eval
target_wavpath_train = argv.target_wavpath_train
target_wavpath_eval = argv.target_wavpath_eval
mc_dir_train = argv.mc_dir_train
mc_dir_test = argv.mc_dir_test
speakers = argv.speakers
num_workers = argv.num_workers if argv.num_workers is not None else cpu_count()
# Do resample.
if perform_data_split == 'n':
if resample_rate > 0:
print(f'Resampling speakers in {origin_wavpath_train} to {target_wavpath_train} at {resample_rate}')
resample_to_xk(resample_rate, origin_wavpath_train, target_wavpath_train, num_workers)
print(f'Resampling speakers in {origin_wavpath_eval} to {target_wavpath_eval} at {resample_rate}')
resample_to_xk(resample_rate, origin_wavpath_eval, target_wavpath_eval, num_workers)
else:
if resample_rate > 0:
print(f'Resampling speakers in {origin_wavpath} to {target_wavpath} at {resample_rate}')
resample_to_xk(resample_rate, origin_wavpath, target_wavpath, num_workers)
print('Making directories for MCEPs...')
os.makedirs(mc_dir_train, exist_ok=True)
os.makedirs(mc_dir_test, exist_ok=True)
num_workers = len(speakers)
print(f'Number of workers: {num_workers}')
executer = ProcessPoolExecutor(max_workers=num_workers)
futures = []
if perform_data_split == 'n':
# current wavs working with (train)
working_train_dir = target_wavpath_train
for spk in tqdm(speakers):
print(speakers)
spk_dir = os.path.join(working_train_dir, spk)
futures.append(executer.submit(partial(process_spk, spk_dir, mc_dir_train)))
# current wavs working with (eval)
working_eval_dir = target_wavpath_eval
for spk in tqdm(speakers):
spk_dir = os.path.join(working_eval_dir, spk)
futures.append(executer.submit(partial(process_spk, spk_dir, mc_dir_test)))
else:
# current wavs we are working with (all for data split)
working_dir = target_wavpath
for spk in tqdm(speakers):
spk_dir = os.path.join(working_dir, spk)
futures.append(executer.submit(partial(process_spk_with_split, spk_dir, mc_dir_train, mc_dir_test)))
result_list = [future.result() for future in tqdm(futures)]
print('Completed:')
print(result_list)
sys.exit(0)