-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
45 lines (38 loc) · 1.27 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <torch/script.h>
#include <torch_tensorrt/torch_tensorrt.h>
using namespace std;
void compile(bool fp16) {
constexpr int64_t INPUT_CHANNEL_NUM = 256;
constexpr int64_t WIDTH = 32;
torch::jit::Module module = torch::jit::load("model.ts");
if (fp16) {
module.to(torch::kCUDA, torch::kHalf);
} else {
module.to(torch::kCUDA);
}
module.eval();
std::vector<int64_t> in_sizes = {1, INPUT_CHANNEL_NUM, WIDTH, WIDTH};
auto input = (fp16 ? torch_tensorrt::Input(in_sizes, torch::kHalf) : torch_tensorrt::Input(in_sizes, torch::kFloat32));
auto compile_settings = torch_tensorrt::ts::CompileSpec({input});
if (fp16) {
compile_settings.enabled_precisions = {torch::kHalf};
} else {
}
module = torch_tensorrt::ts::compile(module, compile_settings);
}
int main() {
// fp32, this thread -> OK
compile(false);
cout << "fp32, this thread -> finish" << endl;
// fp32, another thread -> OK
std::thread thread0([]() { compile(false); });
thread0.join();
cout << "fp32, another thread -> finish" << endl;
// fp16, this thread -> OK
compile(true);
cout << "fp16, this thread -> finish" << endl;
// fp16, another thread -> NG
std::thread thread1([]() { compile(true); });
thread1.join();
cout << "fp16, another thread -> finish" << endl;
}