-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathutils_longbench.py
205 lines (184 loc) · 6.66 KB
/
utils_longbench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import json
import argparse
import numpy as np
from choubun_metrics import (
rouge_ja_score,
qa_f1_ja_score
)
from longbench_metrics import (
qa_f1_score,
rouge_zh_score,
qa_f1_zh_score,
rouge_score,
classification_score,
retrieval_score,
retrieval_zh_score,
count_score,
code_sim_score,
)
dataset2metric = {
# LongBench
"narrativeqa": qa_f1_score,
"qasper": qa_f1_score,
"multifieldqa_en": qa_f1_score,
"multifieldqa_zh": qa_f1_zh_score,
"hotpotqa": qa_f1_score,
"2wikimqa": qa_f1_score,
"musique": qa_f1_score,
"dureader": rouge_zh_score,
"gov_report": rouge_score,
"qmsum": rouge_score,
"multi_news": rouge_score,
"vcsum": rouge_zh_score,
"trec": classification_score,
"triviaqa": qa_f1_score,
"samsum": rouge_score,
"lsht": classification_score,
"passage_retrieval_en": retrieval_score,
"passage_count": count_score,
"passage_retrieval_zh": retrieval_zh_score,
"lcc": code_sim_score,
"repobench-p": code_sim_score,
# ChouBun
"wiki_qa": qa_f1_ja_score,
"edinet_qa": qa_f1_ja_score,
"corp_sec_qa": qa_f1_ja_score,
"corp_sec_sum": rouge_ja_score
}
# This is the customized building prompt for chat models
def build_chat(lm, prompt):
print('IN PROMPT')
print(prompt)
tokenizer = lm.tokenizer
model_name = lm.model_name
if "chatglm3" in model_name:
tokenized_prompt = tokenizer.build_chat_input(prompt)
elif "chatglm" in model_name:
prompt = tokenizer.build_prompt(prompt)
elif "longchat" in model_name or "vicuna" in model_name:
raise NotImplementedError
elif "llama2" in model_name:
prompt = f"[INST]{prompt}[/INST]"
elif "xgen" in model_name:
header = (
"A chat between a curious human and an artificial intelligence "
"assistant. The assistant gives helpful, detailed, and polite "
"answers to the human's questions.\n\n"
)
prompt = header + f" ### Human: {prompt}\n###"
elif "internlm" in model_name:
prompt = f"<|User|>:{prompt}<eoh>\n<|Bot|>:"
else:
print
raise NotImplementedError
if not ("chatglm3" in model_name):
tokenized_prompt = tokenizer(prompt, truncation=False,
return_tensors="pt")
return tokenized_prompt
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default=None)
parser.add_argument('--e', action='store_true',
help="Evaluate on LongBench-E")
return parser.parse_args(args)
def scorer_e(dataset, predictions, answers, lengths, all_classes):
scores = {"0-4k": [], "4-8k": [], "8k+": []}
for (prediction, ground_truths, length) in zip(
predictions, answers, lengths):
score = 0.
if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
prediction = prediction.lstrip('\n').split('\n')[0]
for ground_truth in ground_truths:
score = max(score, dataset2metric[dataset](
prediction, ground_truth, all_classes=all_classes))
if length < 4000:
scores["0-4k"].append(score)
elif length < 8000:
scores["4-8k"].append(score)
else:
scores["8k+"].append(score)
for key in scores.keys():
scores[key] = round(100 * np.mean(scores[key]), 2)
return scores
def scorer(dataset, predictions, answers, all_classes):
total_score = 0.
for (prediction, ground_truths) in zip(predictions, answers):
score = 0.
if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
prediction = prediction.lstrip('\n').split('\n')[0]
for ground_truth in ground_truths:
score = max(score, dataset2metric[dataset](
prediction, ground_truth, all_classes=all_classes))
total_score += score
return round(100 * total_score / len(predictions), 2)
def get_all_scores(task, predictions, answers, all_classes):
all_scores = []
for (prediction, ground_truths) in zip(predictions, answers):
score = 0.
if task in ["trec", "triviaqa", "samsum", "lsht"]:
prediction = prediction.lstrip('\n').split('\n')[0]
for ground_truth in ground_truths:
score = max(score, dataset2metric[task](prediction, ground_truth,
all_classes=all_classes))
all_scores.append(score)
return all_scores
def get_score(task, predictions, answers, all_classes):
total_score = 0.
all_scores = []
# Instantiate tokenizer for ChouBun tasks
if task in ["wiki_qa", "edinet_qa", "corp_sec_qa", "corp_sec_sum"]:
from fugashi import Tagger
tokenizer = Tagger('-Owakati')
else:
tokenizer = None
for (prediction, ground_truths) in zip(predictions, answers):
score = 0.
if task in ["trec", "triviaqa", "samsum", "lsht"]:
prediction = prediction.lstrip('\n').split('\n')[0]
for ground_truth in ground_truths:
cur_score = dataset2metric[task](
prediction,
ground_truth,
tokenizer=tokenizer,
all_classes=all_classes
)
score = max(score, cur_score)
all_scores.append(score)
total_score += score
mean_score = 100 * total_score / len(predictions)
return mean_score, all_scores
if __name__ == '__main__':
args = parse_args()
scores = dict()
if args.e:
path = f"pred_e/{args.model}/"
else:
path = f"pred/{args.model}/"
all_files = os.listdir(path)
print("Evaluating on:", all_files)
for filename in all_files:
if not filename.endswith("jsonl"):
continue
predictions, answers, lengths = [], [], []
dataset = filename.split('.')[0]
with open(f"{path}{filename}", "r", encoding="utf-8") as f:
for line in f:
data = json.loads(line)
predictions.append(data["pred"])
answers.append(data["answers"])
all_classes = data["all_classes"]
if "length" in data:
lengths.append(data["length"])
if args.e:
score = scorer_e(dataset, predictions,
answers, lengths, all_classes)
else:
score = scorer(dataset, predictions, answers, all_classes)
scores[dataset] = score
if args.e:
out_path = f"pred_e/{args.model}/result.json"
else:
out_path = f"pred/{args.model}/result.json"
with open(out_path, "w") as f:
json.dump(scores, f, ensure_ascii=False, indent=4)