diff --git a/docs/code/sensitivity/comparison/README.rst b/docs/code/sensitivity/comparison/README.rst new file mode 100644 index 00000000..59f928b8 --- /dev/null +++ b/docs/code/sensitivity/comparison/README.rst @@ -0,0 +1,6 @@ +Comparison of Sensitivity indices +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +In this section we compare the sensitivity indices (Sobol, Cramér-von Mises and Chatterjee) available in the package using the 'Ishigami function' and the 'Additive model' to illustrate the differences. + +In both the examples, we note that the Cramér-von Mises indices and the Chatterjee indices are almost equal (as the Chatterjee indices converge to the Cramér-von Mises indices in the sample limit). \ No newline at end of file diff --git a/docs/code/sensitivity/comparison/local_additive.py b/docs/code/sensitivity/comparison/local_additive.py new file mode 100644 index 00000000..a0893fa1 --- /dev/null +++ b/docs/code/sensitivity/comparison/local_additive.py @@ -0,0 +1,21 @@ +""" + +Auxiliary file +============================================== + +""" + +import numpy as np + + +def evaluate(X, params) -> np.array: + r"""A linear function that is used to demonstrate sensitivity indices. + + .. math:: + f(x) = a \cdot x_1 + b \cdot x_2 + """ + a, b = params + + Y = a * X[:, 0] + b * X[:, 1] + + return Y diff --git a/docs/code/sensitivity/comparison/local_ishigami.py b/docs/code/sensitivity/comparison/local_ishigami.py new file mode 100644 index 00000000..e5af649f --- /dev/null +++ b/docs/code/sensitivity/comparison/local_ishigami.py @@ -0,0 +1,23 @@ +""" + +Auxiliary file +============================================== + +""" + +import numpy as np + + +def evaluate(X, params=[7, 0.1]): + """Non-monotonic Ishigami-Homma three parameter test function""" + + a = params[0] + b = params[1] + + Y = ( + np.sin(X[:, 0]) + + a * np.power(np.sin(X[:, 1]), 2) + + b * np.power(X[:, 2], 4) * np.sin(X[:, 0]) + ) + + return Y diff --git a/docs/code/sensitivity/comparison/plot_additive.py b/docs/code/sensitivity/comparison/plot_additive.py new file mode 100644 index 00000000..7c34e28b --- /dev/null +++ b/docs/code/sensitivity/comparison/plot_additive.py @@ -0,0 +1,147 @@ +""" + +Additive function +============================================== + +.. math:: + f(x) = a \cdot X_1 + b \cdot X_2, \quad X_1, X_2 \sim \mathcal{N}(0, 1), \quad a,b \in \mathbb{R} + +""" + +# %% +import numpy as np +import matplotlib.pyplot as plt + +from UQpy.run_model.RunModel import RunModel +from UQpy.run_model.model_execution.PythonModel import PythonModel +from UQpy.distributions import Normal +from UQpy.distributions.collection.JointIndependent import JointIndependent +from UQpy.sensitivity.Chatterjee import Chatterjee +from UQpy.sensitivity.CramervonMises import CramervonMises as cvm +from UQpy.sensitivity.Sobol import Sobol +from UQpy.sensitivity.PostProcess import * + +np.random.seed(123) + +# %% [markdown] +# **Define the model and input distributions** + +# Create Model object +a, b = 1, 2 + +model = PythonModel( + model_script="local_additive.py", + model_object_name="evaluate", + var_names=[ + "X_1", + "X_2", + ], + delete_files=True, + params=[a, b], +) + +runmodel_obj = RunModel(model=model) + +# Define distribution object +dist_object = JointIndependent([Normal(0, 1)] * 2) + +# %% [markdown] +# **Compute Sobol indices** + +# %% [markdown] +SA_sobol = Sobol(runmodel_obj, dist_object) + +computed_indices_sobol = SA_sobol.run(n_samples=50_000) + +# %% [markdown] +# **First order Sobol indices** +# +# Expected first order Sobol indices: +# +# :math:`\mathrm{S}_1 = \frac{a^2 \cdot \mathbb{V}[X_1]}{a^2 \cdot \mathbb{V}[X_1] + b^2 \cdot \mathbb{V}[X_2]} = \frac{1^2 \cdot 1}{1^2 \cdot 1 + 2^2 \cdot 1} = 0.2` +# +# :math:`\mathrm{S}_2 = \frac{b^2 \cdot \mathbb{V}[X_2]}{a^2 \cdot \mathbb{V}[X_1] + b^2 \cdot \mathbb{V}[X_2]} = \frac{2^2 \cdot 1}{1^2 \cdot 1 + 2^2 \cdot 1} = 0.8` + +# %% +computed_indices_sobol["sobol_i"] + +# %% [markdown] +# **Compute Chatterjee indices** + +# %% [markdown] +SA_chatterjee = Chatterjee(runmodel_obj, dist_object) + +computed_indices_chatterjee = SA_chatterjee.run(n_samples=50_000) + +# %% +computed_indices_chatterjee["chatterjee_i"] + +# %% +SA_cvm = cvm(runmodel_obj, dist_object) + +# Compute CVM indices using the pick and freeze algorithm +computed_indices_cvm = SA_cvm.run(n_samples=20_000, estimate_sobol_indices=True) + +# %% +computed_indices_cvm["CVM_i"] + +# %% +# **Plot all indices** + +num_vars = 2 +_idx = np.arange(num_vars) +variable_names = [r"$X_{}$".format(i + 1) for i in range(num_vars)] + +# round to 2 decimal places +indices_1 = np.around(computed_indices_sobol["sobol_i"][:, 0], decimals=2) +indices_2 = np.around(computed_indices_chatterjee["chatterjee_i"][:, 0], decimals=2) +indices_3 = np.around(computed_indices_cvm["CVM_i"][:, 0], decimals=2) + +fig, ax = plt.subplots() +width = 0.3 +ax.spines["top"].set_visible(False) +ax.spines["right"].set_visible(False) + +bar_indices_1 = ax.bar( + _idx - width, # x-axis + indices_1, # y-axis + width=width, # bar width + color="C0", # bar color + # alpha=0.5, # bar transparency + label="Sobol", # bar label + ecolor="k", # error bar color + capsize=5, # error bar cap size in pt +) + +bar_indices_2 = ax.bar( + _idx, # x-axis + indices_2, # y-axis + width=width, # bar width + color="C2", # bar color + # alpha=0.5, # bar transparency + label="Chatterjee", # bar label + ecolor="k", # error bar color + capsize=5, # error bar cap size in pt +) + +bar_indices_3 = ax.bar( + _idx + width, # x-axis + indices_3, # y-axis + width=width, # bar width + color="C3", # bar color + # alpha=0.5, # bar transparency + label="Cramér-von Mises", # bar label + ecolor="k", # error bar color + capsize=5, # error bar cap size in pt +) + +ax.bar_label(bar_indices_1, label_type="edge", fontsize=10) +ax.bar_label(bar_indices_2, label_type="edge", fontsize=10) +ax.bar_label(bar_indices_3, label_type="edge", fontsize=10) +ax.set_xticks(_idx, variable_names) +ax.set_xlabel("Model inputs") +ax.set_title("Comparison of sensitivity indices") +ax.set_ylim(top=1) # set only upper limit of y to 1 +ax.legend() + +plt.show() diff --git a/docs/code/sensitivity/comparison/plot_ishigami.py b/docs/code/sensitivity/comparison/plot_ishigami.py new file mode 100644 index 00000000..11624573 --- /dev/null +++ b/docs/code/sensitivity/comparison/plot_ishigami.py @@ -0,0 +1,165 @@ +r""" + +Ishigami function +============================================== + +The ishigami function is a non-linear, non-monotonic function that is commonly used to +benchmark uncertainty and senstivity analysis methods. + +.. math:: + f(x_1, x_2, x_3) = sin(x_1) + a \cdot sin^2(x_2) + b \cdot x_3^4 sin(x_1) + +.. math:: + x_1, x_2, x_3 \sim \mathcal{U}(-\pi, \pi), \quad a, b\in \mathbb{R} + +""" + +# %% +import numpy as np + +from UQpy.run_model.RunModel import RunModel +from UQpy.run_model.model_execution.PythonModel import PythonModel +from UQpy.distributions import Uniform +from UQpy.distributions.collection.JointIndependent import JointIndependent +from UQpy.sensitivity.Chatterjee import Chatterjee +from UQpy.sensitivity.CramervonMises import CramervonMises as cvm +from UQpy.sensitivity.Sobol import Sobol +from UQpy.sensitivity.PostProcess import * + +np.random.seed(123) + +# %% [markdown] +# **Define the model and input distributions** + +# %% +# Create Model object +model = PythonModel( + model_script="local_ishigami.py", + model_object_name="evaluate", + var_names=[r"$X_1$", "$X_2$", "$X_3$"], + delete_files=True, + params=[7, 0.1], +) + +runmodel_obj = RunModel(model=model) + +# Define distribution object +dist_object = JointIndependent([Uniform(-np.pi, 2 * np.pi)] * 3) + +# %% [markdown] +# **Compute Sobol indices** + +# %% +SA_sobol = Sobol(runmodel_obj, dist_object) + +computed_indices_sobol = SA_sobol.run(n_samples=100_000) + +# %% [markdown] +# **First order Sobol indices** +# +# Expected first order Sobol indices: +# +# :math:`S_1` = 0.3139 +# +# :math:`S_2` = 0.4424 +# +# :math:`S_3` = 0.0 + +# %% +computed_indices_sobol["sobol_i"] + +# %% [markdown] +# **Total order Sobol indices** +# +# Expected total order Sobol indices: +# +# :math:`S_{T_1}` = 0.55758886 +# +# :math:`S_{T_2}` = 0.44241114 +# +# :math:`S_{T_3}` = 0.24368366 + +# %% +computed_indices_sobol["sobol_total_i"] + +# %% [markdown] +# **Compute Chatterjee indices** + +# %% [markdown] +SA_chatterjee = Chatterjee(runmodel_obj, dist_object) + +computed_indices_chatterjee = SA_chatterjee.run(n_samples=50_000) + +# %% +computed_indices_chatterjee["chatterjee_i"] + +# %% [markdown] +# **Compute Cramér-von Mises indices** +SA_cvm = cvm(runmodel_obj, dist_object) + +# Compute CVM indices using the pick and freeze algorithm +computed_indices_cvm = SA_cvm.run(n_samples=20_000, estimate_sobol_indices=True) + +# %% +computed_indices_cvm["CVM_i"] + +# %% +# **Plot all indices** + +num_vars = 3 +_idx = np.arange(num_vars) +variable_names = [r"$X_{}$".format(i + 1) for i in range(num_vars)] + +# round to 2 decimal places +indices_1 = np.around(computed_indices_sobol["sobol_i"][:, 0], decimals=2) +indices_2 = np.around(computed_indices_chatterjee["chatterjee_i"][:, 0], decimals=2) +indices_3 = np.around(computed_indices_cvm["CVM_i"][:, 0], decimals=2) + +fig, ax = plt.subplots() +width = 0.3 +ax.spines["top"].set_visible(False) +ax.spines["right"].set_visible(False) + +bar_indices_1 = ax.bar( + _idx - width, # x-axis + indices_1, # y-axis + width=width, # bar width + color="C0", # bar color + # alpha=0.5, # bar transparency + label="Sobol", # bar label + ecolor="k", # error bar color + capsize=5, # error bar cap size in pt +) + +bar_indices_2 = ax.bar( + _idx, # x-axis + indices_2, # y-axis + width=width, # bar width + color="C2", # bar color + # alpha=0.5, # bar transparency + label="Chatterjee", # bar label + ecolor="k", # error bar color + capsize=5, # error bar cap size in pt +) + +bar_indices_3 = ax.bar( + _idx + width, # x-axis + indices_3, # y-axis + width=width, # bar width + color="C3", # bar color + # alpha=0.5, # bar transparency + label="Cramér-von Mises", # bar label + ecolor="k", # error bar color + capsize=5, # error bar cap size in pt +) + +ax.bar_label(bar_indices_1, label_type="edge", fontsize=10) +ax.bar_label(bar_indices_2, label_type="edge", fontsize=10) +ax.bar_label(bar_indices_3, label_type="edge", fontsize=10) +ax.set_xticks(_idx, variable_names) +ax.set_xlabel("Model inputs") +ax.set_title("Comparison of sensitivity indices") +ax.set_ylim(top=1) # set only upper limit of y to 1 +ax.legend() + +plt.show() diff --git a/docs/source/conf.py b/docs/source/conf.py index 68538001..3c7c1031 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -95,6 +95,7 @@ "../code/sensitivity/cramer_von_mises", "../code/sensitivity/chatterjee", "../code/sensitivity/generalised_sobol", + "../code/sensitivity/comparison", "../code/stochastic_processes/bispectral", "../code/stochastic_processes/karhunen_loeve", "../code/stochastic_processes/spectral", @@ -133,6 +134,7 @@ "auto_examples/sensitivity/cramer_von_mises", "auto_examples/sensitivity/chatterjee", "auto_examples/sensitivity/generalised_sobol", + "auto_examples/sensitivity/comparison", "auto_examples/stochastic_processes/bispectral", "auto_examples/stochastic_processes/karhunen_loeve", "auto_examples/stochastic_processes/spectral", diff --git a/docs/source/sensitivity/index.rst b/docs/source/sensitivity/index.rst index 1b2a8367..161cfd3b 100644 --- a/docs/source/sensitivity/index.rst +++ b/docs/source/sensitivity/index.rst @@ -26,3 +26,10 @@ Sensitivity analysis comprises techniques focused on determining how the variati Morris Sensitivity Polynomial Chaos Sensitivity Sobol Sensitivity + +Examples +"""""""""" + +.. toctree:: + + Comparison of indices <../auto_examples/sensitivity/comparison/index>