diff --git a/tests/unit_tests/sensitivity/ishigami.py b/tests/unit_tests/sensitivity/ishigami.py new file mode 100644 index 000000000..41ec55149 --- /dev/null +++ b/tests/unit_tests/sensitivity/ishigami.py @@ -0,0 +1,17 @@ +""" +Auxiliary file +============================================== +""" + +import numpy as np + +def evaluate(X, params=[7, 0.1]): + """Non-monotonic Ishigami-Homma three parameter test function""" + + a = params[0] + b = params[1] + + Y = np.sin(X[:, 0]) + a * np.power(np.sin(X[:, 1]), 2) + \ + b * np.power(X[:, 2], 4) * np.sin(X[:, 0]) + + return Y diff --git a/tests/unit_tests/sensitivity/sobol_func.py b/tests/unit_tests/sensitivity/sobol_func.py new file mode 100644 index 000000000..af1636315 --- /dev/null +++ b/tests/unit_tests/sensitivity/sobol_func.py @@ -0,0 +1,35 @@ +import numpy as np +import copy + + +def evaluate(X, a_values): + + dims = len(a_values) + g = 1 + + for i in range(dims): + g_i = (np.abs(4 * X[:, i] - 2) + a_values[i]) / (1 + a_values[i]) + g *= g_i + + return g + + +def sensitivities(a_values): + + dims = len(a_values) + + Total_order = np.zeros((dims, 1)) + + V_i = (3 * (1 + a_values) ** 2) ** (-1) + + total_variance = np.prod(1 + V_i) - 1 + + First_order = V_i / total_variance + + for i in range(dims): + + rem_First_order = copy.deepcopy(V_i) + rem_First_order[i] = 0 + Total_order[i] = V_i[i] * np.prod(rem_First_order + 1) / total_variance + + return First_order.reshape(-1, 1), Total_order diff --git a/tests/unit_tests/sensitivity/test_baseclass.py b/tests/unit_tests/sensitivity/test_baseclass.py new file mode 100644 index 000000000..458826d6f --- /dev/null +++ b/tests/unit_tests/sensitivity/test_baseclass.py @@ -0,0 +1,234 @@ +""" +This module is used to test the functionalities of the baseclass. + +- test_pick_and_freeze_sampling: + Test the `generate_pick_and_test_samples` function. +- test_bootstrap_for_vector: + Test the bootstrap sampling for a vector. +- test_bootstrap_for_matrix: + Test the bootstrap sampling for a matrix. + +""" + +import numpy as np +import pytest + +from UQpy.run_model.RunModel import RunModel +from UQpy.run_model.model_execution.PythonModel import PythonModel +from UQpy.distributions import Uniform +from UQpy.distributions.collection.JointIndependent import JointIndependent +from UQpy.sensitivity.sobol import Sobol +from UQpy.sensitivity.baseclass.pickfreeze import generate_pick_freeze_samples + +# Prepare +############################################################################### + +# Prepare the input distribution +@pytest.fixture() +def ishigami_input_dist_object(): + """ + This function returns the input distribution for the Ishigami function. + + X1 ~ Uniform(-pi, pi) + X2 ~ Uniform(-pi, pi) + X3 ~ Uniform(-pi, pi) + + """ + return JointIndependent([Uniform(-np.pi, 2 * np.pi)] * 3) + + +@pytest.fixture() +def ishigami_model_object(): + """This function creates the Ishigami run_model_object""" + model = PythonModel( + model_script="ishigami.py", + model_object_name="evaluate", + var_names=[r"$X_1$", "$X_2$", "$X_3$"], + delete_files=True, + params=[7, 0.1], + ) + + runmodel_obj = RunModel(model=model) + + return runmodel_obj + + +@pytest.fixture() +def sobol_object(ishigami_model_object, ishigami_input_dist_object): + """This function returns the Sobol object.""" + + return Sobol(ishigami_model_object, ishigami_input_dist_object) + + +@pytest.fixture() +def sobol_object_input_samples_small(sobol_object): + """This creates the Sobol object.""" + + SA = sobol_object + + np.random.seed(12345) # set seed for reproducibility + + SA.n_samples = 2 + + return generate_pick_freeze_samples(SA.dist_object, SA.n_samples) + + +# Generate N pick and free samples +@pytest.fixture() +def pick_and_freeze_samples_small(): + """ + This function returns input matrices A, B and C_i with a small number + of samples for the Ishigami input distribution. + This is used to test the `generate_pick_and_freeze_samples` function. + + The samples are generated as follows: + + dist_1 = JointInd([Uniform(-np.pi, 2*np.pi)]*3) + + np.random.seed(12345) #! set seed for reproducibility + + n_samples = 2 + n_vars = 3 + + samples = dist_1.rvs(n_samples*2) + + # Split samples + A_samples = samples[:n_samples, :] + B_samples = samples[n_samples:, :] + + def _get_C_i(i, A, B): + C_i = copy.deepcopy(B) + C_i[:, i] = A[:, i] + return C_i + + C_samples = np.zeros((n_vars, n_samples, n_vars)) + + for i in range(3): + C_samples[i, :, :] = _get_C_i(i, A_samples, B_samples) + + print(np.around(A_samples,3)) + print(np.around(B_samples,3)) + print(np.around(C_samples,3)) + + """ + + A_samples = np.array([[2.699, 0.426, 1.564], [-1.154, 0.600, 0.965]]) + + B_samples = np.array([[-1.986, 2.919, 1.556], [-1.856, 0.962, 2.898]]) + + C_samples = np.array( + [ + [[2.699, 2.919, 1.556], [-1.154, 0.962, 2.898]], + [[-1.986, 0.426, 1.556], [-1.856, 0.6, 2.898]], + [[-1.986, 2.919, 1.564], [-1.856, 0.962, 0.965]], + ] + ) + + return A_samples, B_samples, C_samples + + +@pytest.fixture() +def random_f_A(): + """This function returns an A-like vector""" + + rand_f_A = np.array([[100], [101], [102], [103], [104]]) + + return rand_f_A + + +@pytest.fixture() +def random_f_C_i(): + """This function returns a C_i-like vector""" + + rand_f_C_i = np.array([[100, 200], [101, 201], [102, 202], [103, 203], [104, 204]]) + return rand_f_C_i + + +@pytest.fixture() +def manual_bootstrap_samples_f_A(): + """This function bootstraps the A-like vector using random indices""" + + # Genrated using np.random.randint(low=0, high=5, size=(5,1)) + # with np.random.seed(12345) + # rand_indices_f_A = np.array([ [2], + # [1], + # [4], + # [1], + # [2]]) + + # bootstrap_f_A = rand_f_A[rand_indices_A] + bootstrap_sample_A = np.array([[102], [101], [104], [101], [102]]) + + return bootstrap_sample_A + + +@pytest.fixture() +def manual_bootstrap_samples_f_C_i(): + """This function bootstraps the C_i-like vector using random indices""" + + # Genrated using np.random.randint(low=0, high=5, size=(5,2)) + # with np.random.seed(12345) + # rand_indices_C_i = np.array([ [2, 1], + # [4, 1], + # [2, 1], + # [1, 3], + # [1, 3]]) + + bootstrap_f_C_i = np.array( + [[102, 201], [104, 201], [102, 201], [101, 203], [101, 203]] + ) + + return bootstrap_f_C_i + + +# Unit tests +############################################################################### + + +def test_pick_and_freeze_sampling( + pick_and_freeze_samples_small, sobol_object_input_samples_small +): + + """Test the `generate_pick_and_test_samples` function.""" + + # Prepare + A_samples, B_samples, C_samples = pick_and_freeze_samples_small + A_test, B_test, C_test_generator, _ = sobol_object_input_samples_small + + # Act + assert np.allclose(A_samples, np.around(A_test, 3)) + assert np.allclose(B_samples, np.around(B_test, 3)) + + for i in range(3): + C_test = next(C_test_generator) + assert np.allclose(C_samples[i, :, :], np.around(C_test, 3)) + + +def test_bootstrap_for_vector(random_f_A, manual_bootstrap_samples_f_A): + + """Test the bootstrap sampling for a vector.""" + + # Prepare + np.random.seed(12345) #! set seed for reproducibility + + gen_f_A = Sobol.bootstrap_sample_generator_1D(random_f_A) + + bootstrap_samples_f_A = next(gen_f_A) + + # Act + assert np.array_equal(manual_bootstrap_samples_f_A, bootstrap_samples_f_A) + + +def test_bootstrap_for_matrix(random_f_C_i, manual_bootstrap_samples_f_C_i): + + """Test the bootstrap sampling for a matrix.""" + + # Prepare + np.random.seed(12345) #! set seed for reproducibility + + gen_f_C_i = Sobol.bootstrap_sample_generator_2D(random_f_C_i) + + bootstrap_samples_C_i = next(gen_f_C_i) + + # Act + assert np.array_equal(manual_bootstrap_samples_f_C_i, bootstrap_samples_C_i) diff --git a/tests/unit_tests/sensitivity/test_sobol.py b/tests/unit_tests/sensitivity/test_sobol.py new file mode 100644 index 000000000..64882a155 --- /dev/null +++ b/tests/unit_tests/sensitivity/test_sobol.py @@ -0,0 +1,399 @@ +""" +This is the test module for Sobol sensitivity indices. + +Here, we will use the Ishigami function to test the output. + +The following methods are tested: +1. generate_pick_and_freeze_samples +2. pick_and_freeze_estimator (First and Total order Sobol indices) +3. pick_and_freeze_estimator (Second order Sobol indices) using [1]_. + +References +---------- + +.. [1] Graham Glen, Kristin Isaacs, Estimating Sobol sensitivity indices using + correlations, Environmental Modelling & Software, Volume 37, 2012, Pages 157-166, + ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2012.03.014. + + +Important +---------- +The computed indices are computed using the `np.isclose` function. + +Function signature: + numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False) + + Parameters: + a, b: array_like + Input arrays to compare. + + rtol: float + The relative tolerance parameter. + + atol: float + The absolute tolerance parameter. + +Each element of the `diff` array is compared as follows: +diff = |a - b| +diff <= atol + rtol * abs(b) + +- relative tolerance: rtol * abs(b) + It is the maximum allowed difference between a and b, + relative to the absolute value of b. + For example, to set a tolerance of 1%, pass rol=0.01, + which assures that the values are within 2 decimal places of each other. +- absolute tolerance: atol + When b is close to zero, the atol value is used. + +""" + +import ntpath +import numpy as np +import pytest +import scipy + +from UQpy.run_model.RunModel import RunModel +from UQpy.run_model.model_execution.PythonModel import PythonModel +from UQpy.distributions import Uniform +from UQpy.distributions.collection.JointIndependent import JointIndependent +from UQpy.sensitivity.sobol import Sobol + +# Prepare +############################################################################### + +# Prepare the input distribution +@pytest.fixture() +def ishigami_input_dist_object(): + """ + This function returns the input distribution for the Ishigami function. + + X1 ~ Uniform(-pi, pi) + X2 ~ Uniform(-pi, pi) + X3 ~ Uniform(-pi, pi) + + """ + return JointIndependent([Uniform(-np.pi, 2 * np.pi)] * 3) + + +@pytest.fixture() +def ishigami_model_object(): + """This function creates the Ishigami run_model_object""" + model = PythonModel( + model_script="ishigami.py", + model_object_name="evaluate", + var_names=[r"$X_1$", "$X_2$", "$X_3$"], + delete_files=True, + params=[7, 0.1], + ) + + runmodel_obj = RunModel(model=model) + + return runmodel_obj + + +@pytest.fixture() +def sobol_object(ishigami_model_object, ishigami_input_dist_object): + """This function returns the Sobol object.""" + + return Sobol(ishigami_model_object, ishigami_input_dist_object) + + +@pytest.fixture() +def analytical_ishigami_Sobol_indices(): + """ + Analytical Sobol indices for the Ishigami function. + + Copy-paste the following to reproduce the given indices: + + a = 7 + b = 0.1 + + V1 = 0.5*(1 + (b*np.pi**4)/5)**2 + V2 = (a**2)/8 + V3 = 0 + + VT3 = (8*(b**2)*np.pi**8)/225 + VT1 = V1 + VT3 + VT2 = V2 + + total_variance = V2 + (b*np.pi**4)/5 + ((b**2) * np.pi**8)/18 + 0.5 + + S = np.array([V1, V2, V3])/total_variance + S_T = np.array([VT1, VT2, VT3])/total_variance + + S = np.around(S, 4) + S_T = np.around(S_T, 4) + + """ + + S1 = 0.3139 + S2 = 0.4424 + S3 = 0 + + S_T1 = 0.5576 + S_T2 = 0.4424 + S_T3 = 0.2437 + + S = np.array([S1, S2, S3]) + S_T = np.array([S_T1, S_T2, S_T3]) + + return S.reshape(-1, 1), S_T.reshape(-1, 1) + + +@pytest.fixture() +def saltelli_ishigami_Sobol_indices(sobol_object): + + SA = sobol_object + + np.random.seed(12345) #! set seed for reproducibility + + computed_indices = SA.run(n_samples=1_000_000) + + return computed_indices["sobol_i"], computed_indices["sobol_total_i"] + + +@pytest.fixture() +def NUM_SAMPLES(): + """This function returns the number of samples for bootstrapping""" + + num_bootstrap_samples = 10_000 + num_samples = 100_000 + + return num_bootstrap_samples, num_samples + + +@pytest.fixture() +def bootstrap_sobol_index_variance(sobol_object, NUM_SAMPLES): + + #### SETUP #### + SA = sobol_object + + np.random.seed(12345) #! set seed for reproducibility + + confidence_level = 0.95 + delta = -scipy.stats.norm.ppf((1 - confidence_level) / 2) + + num_bootstrap_samples, n_samples = NUM_SAMPLES + + #### Compute indices #### + computed_indices = SA.run( + n_samples=n_samples, + num_bootstrap_samples=num_bootstrap_samples, + confidence_level=confidence_level, + ) + + First_order = computed_indices["sobol_i"].ravel() + Total_order = computed_indices["sobol_total_i"].ravel() + CI_first_order = computed_indices["CI_sobol_i"] + CI_total_order = computed_indices["CI_sobol_total_i"] + + #### Compute variance #### + upper_bound_first_order = CI_first_order[:, 1] + upper_bound_total_order = CI_total_order[:, 1] + + std_bootstrap_first_order = (upper_bound_first_order - First_order) / delta + std_bootstrap_total_order = (upper_bound_total_order - Total_order) / delta + + return std_bootstrap_first_order**2, std_bootstrap_total_order**2 + + +@pytest.fixture() +def model_eval_sobol_index_variance(): + + """ + For computational efficiency, the variance of the Sobol indices + is precomputed using model evaluations with + NUM_SAMPLES (num_repetitions=10_000, num_samples=100_000) + + Copy-paste the following code to generate the variance + of the Sobol indices: + + runmodel_obj = RunModel( + model_script='ishigami.py', + var_names=['X1', 'X2', 'X3'], + vec=True, delete_files=True) + + input_obj = JointInd([Uniform(-np.pi, 2*np.pi)]*3) + + SA = Sobol(runmodel_obj, input_obj) + + np.random.seed(12345) # for reproducibility + + num_repetitions, n_samples = 10_000, 100_000 + + num_vars = 3 + + sample_first_order = np.zeros((num_vars, num_repetitions)) + sample_total_order = np.zeros((num_vars, num_repetitions)) + + for i in range(num_repetitions): + S, S_T = SA.run(n_samples=n_samples) + + sample_first_order[:, i] = S.ravel() + sample_total_order[:, i] = S_T.ravel() + + variance_first_order = np.var(sample_first_order, axis=1, ddof=1).reshape(-1, 1) + variance_total_order = np.var(sample_total_order, axis=1, ddof=1).reshape(-1, 1) + + print(variance_first_order) + print(variance_total_order) + + """ + + variance_first_order = np.array([1.98518409e-05, 1.69268227e-05, 2.50390610e-05]) + + variance_total_order = np.array([2.82995855e-05, 2.46373399e-05, 2.59811868e-05]) + + return variance_first_order, variance_total_order + + +@pytest.fixture() +def sobol_g_function_input_dist_object(): + """ + This function returns the input distribution object for the Sobol G function. + + X1 ~ Uniform(0, 1) + X2 ~ Uniform(0, 1) + X3 ~ Uniform(0, 1) + X4 ~ Uniform(0, 1) + X5 ~ Uniform(0, 1) + X6 ~ Uniform(0, 1) + + """ + + dist_object = JointIndependent([Uniform(0, 1)] * 6) + + return dist_object + + +@pytest.fixture() +def sobol_g_function_model_object(): + """This function creates the Sobol g-function model object""" + + a_vals = np.array([0.0, 0.5, 3.0, 9.0, 99.0, 99.0]) + + model = PythonModel( + model_script="sobol_func.py", + model_object_name="evaluate", + delete_files=True, + a_values=a_vals, + ) + + runmodel_obj = RunModel(model=model) + + return runmodel_obj + + +@pytest.fixture() +def sobol_object_g_func( + sobol_g_function_input_dist_object, sobol_g_function_model_object +): + """This function creates the Sobol object for the g-function""" + + sobol_object = Sobol( + sobol_g_function_model_object, sobol_g_function_input_dist_object + ) + + return sobol_object + + +@pytest.fixture() +def analytical_sobol_g_func_second_order_indices(): + """ + This function returns the analytical second order Sobol indices for the g-function + + The values were obtained from [1]_. + + """ + + S12 = 0.0869305 + S13 = 0.0122246 + S14 = 0.00195594 + S15 = 0.00001956 + S16 = 0.00001956 + S23 = 0.00543316 + S24 = 0.00086931 + S25 = 0.00000869 + S26 = 0.00000869 + S34 = 0.00012225 + S35 = 0.00000122 + S36 = 0.00000122 + S45 = 0.00000020 + S46 = 0.00000020 + S56 = 2.0e-9 + + S_2 = [S12, S13, S14, S15, S16, S23, S24, S25, S26, S34, S35, S36, S45, S46, S56] + + return np.array(S_2).reshape(-1, 1) + + +@pytest.fixture() +def saltelli_sobol_g_function(sobol_object_g_func): + + SA = sobol_object_g_func + + np.random.seed(12345) #! set seed for reproducibility + + # Compute Sobol indices using the pick and freeze algorithm + # Save only second order indices + computed_indices = SA.run(n_samples=100_000, estimate_second_order=True) + + return computed_indices["sobol_ij"] + + +# Unit tests +############################################################################### + + +def test_pick_and_freeze_estimator( + analytical_ishigami_Sobol_indices, saltelli_ishigami_Sobol_indices +): + + """ + Test the Saltelli pick and freeze estimator using 1_000_000 samples. + """ + + # Prepare + S_analytical, S_T_analytical = analytical_ishigami_Sobol_indices + S_saltelli, S_T_saltelli = saltelli_ishigami_Sobol_indices + + # Act + assert S_analytical.shape == S_saltelli.shape + assert S_T_analytical.shape == S_T_saltelli.shape + # Idea: Measure accuracy upto 2 decimal places -> rtol=0, atol=1e-2 + assert np.isclose(S_saltelli, S_analytical, rtol=0, atol=1e-2).all() + assert np.isclose(S_T_saltelli, S_T_analytical, rtol=0, atol=1e-2).all() + + +def test_bootstrap_variance_computation( + model_eval_sobol_index_variance, bootstrap_sobol_index_variance +): + + """Test the bootstrap variance computation.""" + + # Prepare + var_first, var_total = model_eval_sobol_index_variance + boot_var_first, boot_var_total = bootstrap_sobol_index_variance + + # Act + assert var_first.shape == boot_var_first.shape + assert var_total.shape == boot_var_total.shape + + # Idea: Ensure bootstrap variance and MC variance are of same order -> rtol=0, atol=1e-4 + assert np.isclose(boot_var_first, var_first, rtol=0, atol=1e-4).all() + assert np.isclose(boot_var_total, var_total, rtol=0, atol=1e-4).all() + + +def test_second_order_indices( + analytical_sobol_g_func_second_order_indices, saltelli_sobol_g_function +): + + """Test the second order indices computation.""" + + # Prepare + S_2_analytical = analytical_sobol_g_func_second_order_indices + S_2 = saltelli_sobol_g_function + + # Act + # Idea: Ensure second order indices are of same order -> rtol=0, atol=1e-4 + assert np.isclose(S_2, S_2_analytical, rtol=0, atol=1e-2).all()