-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrainer.py
802 lines (665 loc) · 36.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
from re import S
import torch
import datasets
import numpy as np
import time
import weakref
import math
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from tqdm import tqdm
import json
import torchvision
from utils import *
from layers import *
import datasets
import networks
import random
from skimage.segmentation import all_felzenszwalb as felz_seg
# seed
torch.manual_seed(123)
np.random.seed(123)
random.seed(123)
class Trainer:
def __init__(self, options):
self.opt = options
self.log_path = os.path.join(self.opt.log_dir, self.opt.model_name)
self.device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
# checking height and width are multiples of 32
assert self.opt.height % 32 == 0, "'height' must be a multiple of 32"
assert self.opt.width % 32 == 0, "'width' must be a multiple of 32"
self.models = {}
self.parameters_to_train = []
self.num_scales = len(self.opt.scales)
self.num_input_frames = len(self.opt.frame_ids)
self.num_pose_frames = 2
# depth encoder
self.models["encoder"] = networks.ResnetEncoder(
self.opt.num_layers, self.opt.weights_init == "pretrained")
self.models["encoder"].to(self.device)
self.parameters_to_train += list(self.models["encoder"].parameters())
# depth decoder
self.models["depth"] = networks.DepthDecoder(
self.models["encoder"].num_ch_enc, self.opt.scales)
self.models["depth"].to(self.device)
self.parameters_to_train += list(self.models["depth"].parameters())
# pose encoder
self.models["pose_encoder"] = networks.ResnetEncoder(
self.opt.num_layers,
self.opt.weights_init == "pretrained",
num_input_images=self.num_pose_frames)
self.models["pose_encoder"].to(self.device)
self.parameters_to_train += list(self.models["pose_encoder"].parameters())
# pose decoder
self.models["pose"] = networks.PoseDecoder(
self.models["pose_encoder"].num_ch_enc,
num_input_features=1,
num_frames_to_predict_for=2)
self.models["pose"].to(self.device)
self.parameters_to_train += list(self.models["pose"].parameters())
# optimizer
self.model_optimizer = optim.Adam(self.parameters_to_train, self.opt.learning_rate)
self.model_lr_scheduler = optim.lr_scheduler.MultiStepLR(
self.model_optimizer, self.opt.scheduler_step_size, 0.1)
# loading weights
if self.opt.load_weights_folder is not None:
self.load_model()
# dataset
datasets_dict = {"nyu": datasets.NYUDataset}
self.dataset = datasets_dict[self.opt.train_dataset]
if self.opt.train_dataset == "nyu":
train_filenames = readlines(self.opt.train_split)
val_filenames = readlines(self.opt.val_split)
train_dataset = self.dataset(
self.opt.data_path, train_filenames, self.opt.height, self.opt.width,
self.opt.frame_ids, 1, is_train=True,
vps_path=self.opt.vps_path,
return_vps=self.opt.using_disp2seg or self.opt.using_normloss)
self.train_loader = DataLoader(
train_dataset, self.opt.batch_size, True,
num_workers=self.opt.num_workers, pin_memory=True, drop_last=True)
val_dataset = self.dataset(self.opt.val_path, val_filenames,
self.opt.height, self.opt.width,[0], 1, is_train=False)
self.val_dataloader = DataLoader(val_dataset, 1, shuffle=False, num_workers=self.opt.num_workers)
self.depth_metric_names = [
"de/abs_rel", "de/sq_rel", "de/rms", "de/log10", "da/a1", "da/a2", "da/a3"]
else:
print('No implementation for other dataset. Please check options.')
exit()
num_train_samples = len(train_filenames)
self.steps_for_each_epoch = num_train_samples // self.opt.batch_size
self.num_total_steps = num_train_samples // self.opt.batch_size * self.opt.num_epochs
# process modules setting
self.ssim_sparse = SSIM_sparse()
self.ssim_sparse.to(self.device)
self.ssim = SSIM()
self.ssim.to(self.device)
self.pdist = nn.PairwiseDistance(p=2)
self.backproject_depth = {}
self.project_3d = {}
for scale in self.opt.scales:
h = self.opt.height // (2 ** scale)
w = self.opt.width // (2 ** scale)
self.backproject_depth[scale] = BackprojectDepth(self.opt.batch_size, h, w)
self.backproject_depth[scale].to(self.device)
self.project_3d[scale] = Project3D(self.opt.batch_size, h, w)
self.project_3d[scale].to(self.device)
print("Training is using:\n ", self.device)
print("Models and tensorboard events files are saved to:\n ", self.opt.log_dir)
print("Training is using frames: \n ", self.opt.frame_ids_to_train)
print("Using train split: ", self.opt.train_split)
print("There are {:d} training items and {:d} validation items\n".format(len(train_dataset), -1))
print("Using norm loss: ", self.opt.using_normloss)
print("Using planar loss: ", self.opt.using_disp2seg)
print("{} for normloss {} for planar loss".format(self.opt.lambda_norm_reg, self.opt.lambda_planar_reg))
if self.opt.using_normloss or self.opt.using_disp2seg:
print("vps_path: ", self.opt.vps_path)
print("start epoch: ", self.opt.start_epoch)
print("load weights folder: \n", self.opt.load_weights_folder)
if self.opt.start_epoch == 0:
assert os.path.exists(self.log_path) == False, print('start epoch from 0 but log path conflict \n check log path')
self.writers = {}
for mode in ["train", "val"]:
self.writers[mode] = SummaryWriter(os.path.join(self.log_path, mode))
self.save_opts()
def set_train(self):
"""Convert all models to training mode
"""
for m in self.models.values():
m.train()
def set_eval(self):
"""Convert all models to testing/evaluation mode
"""
for m in self.models.values():
m.eval()
def train(self):
"""Run the entire training pipeline
"""
# self.step = 0
# from strat_epoch
self.step = self.opt.start_epoch * self.steps_for_each_epoch
print("Training start from {} epoch {} step".format(self.opt.start_epoch, self.step))
with open(os.path.join(self.log_path, 'eval_res_for_each_epoch.txt'), 'a') as f:
f.write('\n\n######program start######')
f.write("\nTraining start from {} epoch {} step".format(self.opt.start_epoch, self.step))
self.start_time = time.time()
if self.opt.train_dataset == "nyu":
self.val()
elif self.opt.train_dataset == "kitti":
self.val_kitti()
for self.epoch in range(self.opt.start_epoch, self.opt.num_epochs):
self.run_epoch()
if (self.epoch + 1) % self.opt.save_frequency == 0:
self.save_model()
if self.opt.train_dataset == "nyu":
self.val()
elif self.opt.train_dataset == "kitti":
self.val_kitti()
def run_epoch(self):
"""Run a single epoch of training and validation
"""
self.model_lr_scheduler.step()
self.mmap_thresh_save_flag = True
self.set_train()
for param in self.model_optimizer.param_groups:
with open(os.path.join(self.log_path, 'eval_res_for_each_epoch.txt'), 'a') as f:
f.write('\nepoch {} time {}'.format(self.epoch, time.asctime( time.localtime(time.time()) )))
f.write('\nlr {}\n'.format(param["lr"]))
print("lr:", param["lr"])
for batch_idx, inputs in enumerate(self.train_loader):
before_op_time = time.time()
outputs, losses = self.process_batch(inputs)
self.model_optimizer.zero_grad()
losses["loss"].backward()
self.model_optimizer.step()
duration = time.time() - before_op_time
self.log_time(batch_idx, duration, losses)
if self.step % self.opt.log_frequency == 0:
self.log("train", inputs, outputs, losses)
for items in outputs.items():
del items
self.step += 1
def process_batch(self, inputs):
"""Pass a minibatch through the network and generate images and losses
Inputs -> dict consists of :
vps at 0 scale(if self.opt.using_disp2seg or self.opt.using_normloss)
K/inv_K
color and color augmented versions
"""
for key, ipt in inputs.items():
inputs[key] = ipt.to(self.device)
outputs = {}
# get depth
for i in [0]:
features = self.models["encoder"](inputs[("color_aug", i, 0)])
output = self.models["depth"](features)
output = {(disp, i, scale): output[(disp, scale)] for (disp, scale) in output.keys()}
outputs.update(output)
# get pose
outputs.update(self.predict_poses(inputs, features))
# get planar depth and sparse pred
self.generate_sparse_pred(inputs, outputs)
losses = self.compute_losses(inputs, outputs)
return outputs, losses
def predict_poses(self, inputs, features):
"""Predict poses between input frames for monocular sequences.
"""
outputs = {}
pose_feats = {f_i: inputs["color_aug", f_i, 0] for f_i in self.opt.frame_ids_to_train}
for f_i in [-2, -1, 0, 1] if len(self.opt.frame_ids_to_train) == 5 else [-1, 0]:
# To maintain ordering we always pass frames in temporal order
pose_inputs = [pose_feats[f_i], pose_feats[f_i + 1]]
pose_inputs = [self.models["pose_encoder"](torch.cat(pose_inputs, 1))]
axisangle, translation = self.models["pose"](pose_inputs)
outputs[("axisangle", 0, f_i)] = axisangle
outputs[("translation", 0, f_i)] = translation
# Invert the matrix if the frame id is negative
outputs[("cam_T_cam", f_i, f_i + 1)] = transformation_from_parameters(
axisangle[:, 0], translation[:, 0], invert=False)
if len(self.opt.frame_ids_to_train) == 5:
outputs[("cam_T_cam", 0, 2)] = outputs[("cam_T_cam", 0, 1)] @ outputs[("cam_T_cam", 1, 2)]
outputs[("cam_T_cam", -2, 0)] = outputs[("cam_T_cam", -2, -1)] @ outputs[("cam_T_cam", -1, 0)]
outputs[("cam_T_cam", 0, -2)] = inv_SE3(outputs[("cam_T_cam", -2, 0)])
outputs[("cam_T_cam", 0, -1)] = inv_SE3(outputs[("cam_T_cam", -1, 0)])
return outputs
def generate_sparse_pred(self, inputs, outputs):
"""Generate the warped (reprojected) color images for a minibatch.
Generated images are saved into the `outputs` dictionary.
"""
for scale in self.opt.scales:
disp = outputs[("disp", 0, scale)]
disp = F.interpolate(
disp, [self.opt.height, self.opt.width], mode="bilinear", align_corners=False)
source_scale = 0
_, depth = disp_to_depth(disp, self.opt.min_depth, self.opt.max_depth)
outputs[("depth", 0, scale)] = depth
if self.opt.using_normloss or self.opt.using_disp2seg:
cam_points = self.backproject_depth[source_scale](
depth, inputs[("inv_K", source_scale)])
outputs[('cam_points', source_scale)] = cam_points
self.compute_smooth_norm(inputs, outputs)
if self.opt.using_disp2seg:
self.generate_planar_depth(inputs, outputs, 0, scale)
# sample depth for dso points
dso_points = inputs['dso_points']
y0 = dso_points[:, :, 0]
x0 = dso_points[:, :, 1]
dso_points = torch.cat((x0.unsqueeze(2), y0.unsqueeze(2)), dim=2)
flat = (x0 + y0 * self.opt.width).long()
dso_depth = torch.gather(depth.view(self.opt.batch_size, -1), 1, flat)
# generate pattern
meshgrid = np.meshgrid([-2, 0, 2],[-2, 0, 2], indexing='xy')
meshgrid = np.stack(meshgrid, axis=0).astype(np.float32)
meshgrid = torch.from_numpy(meshgrid).to(dso_points.device).permute(1, 2, 0).view(1, 1, 9, 2)
dso_points = dso_points.unsqueeze(2) + meshgrid
dso_points = dso_points.reshape(self.opt.batch_size, -1, 2)
dso_depth = dso_depth.view(self.opt.batch_size, -1, 1).expand(-1, -1, 9).reshape(self.opt.batch_size, 1, -1)
# convert to point cloud
xy1 = torch.cat((dso_points, torch.ones_like(dso_points[:, :, :1])), dim=2)
xy1 = xy1.permute(0, 2, 1)
cam_points = (inputs[("inv_K", source_scale)][:, :3, :3] @ xy1) * dso_depth
points = torch.cat((cam_points, torch.ones_like(cam_points[:, :1, :])), dim=1)
outputs[("cam_T_cam", 0, 0)] = torch.eye(4).view(1, 4, 4).expand(self.opt.batch_size, 4, 4).cuda()
for _, frame_id in enumerate(self.opt.frame_ids_to_train):
T = outputs[("cam_T_cam", 0, frame_id)]
# projects to different frames
P = torch.matmul(inputs[("K", source_scale)], T)[:, :3, :]
cam_points = torch.matmul(P, points)
pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + 1e-7)
pix_coords = pix_coords.view(self.opt.batch_size, 2, -1, 9)
pix_coords = pix_coords.permute(0, 2, 3, 1)
pix_coords[..., 0] /= self.opt.width - 1
pix_coords[..., 1] /= self.opt.height - 1
pix_coords = (pix_coords - 0.5) * 2
# save mask
valid = (pix_coords[..., 0] > -1.) & (pix_coords[..., 0] < 1.) & (pix_coords[..., 1] > -1.) & (
pix_coords[..., 1] < 1.)
outputs[("dso_mask", frame_id, scale)] = valid.unsqueeze(1).float()
# sample patch from color images
outputs[("dso_color", frame_id, scale)] = F.grid_sample(
inputs[("color", frame_id, source_scale)],
pix_coords,
padding_mode="border")
def generate_planar_depth(self, inputs, outputs, frame_id, scale):
source_scale = 0
cam_points = outputs[('cam_points', source_scale)]
if self.opt.using_disp2seg:
self.compute_seg(inputs, outputs)
segment = outputs[("disp2seg", 0, source_scale)].unsqueeze(1)
else:
segment = inputs[('segment', frame_id, 0)].long()
max_num = segment.max().item() + 1
sum_points = torch.zeros((self.opt.batch_size, max_num, 3)).to(self.device)
area = torch.zeros((self.opt.batch_size, max_num)).to(self.device)
for channel in range(3):
points_channel = sum_points[:, :, channel]
points_channel = points_channel.reshape(self.opt.batch_size, -1)
points_channel.scatter_add_(1, segment.view(self.opt.batch_size, -1),
cam_points[:, channel, ...].view(self.opt.batch_size, -1))
area.scatter_add_(1, segment.view(self.opt.batch_size, -1),
torch.ones_like(outputs[("depth", 0, source_scale)]).view(self.opt.batch_size, -1))
# X^T X
cam_points_tmp = cam_points[:, :3, :]
x_T_dot_x = (cam_points_tmp.unsqueeze(1) * cam_points_tmp.unsqueeze(2))
x_T_dot_x = x_T_dot_x.view(self.opt.batch_size, 9, -1)
X_T_dot_X = torch.zeros((self.opt.batch_size, max_num, 9)).cuda()
for channel in range(9):
points_channel = X_T_dot_X[:, :, channel]
points_channel = points_channel.reshape(self.opt.batch_size, -1)
points_channel.scatter_add_(1, segment.view(self.opt.batch_size, -1),
x_T_dot_x[:, channel, ...].view(self.opt.batch_size, -1))
xTx = X_T_dot_X.view(self.opt.batch_size, max_num, 3, 3)
# take inverse
xTx_inv = mat_3x3_inv(xTx.view(-1, 3, 3) + 0.01*torch.eye(3).view(1,3,3).expand(self.opt.batch_size*max_num, 3, 3).cuda())
xTx_inv = xTx_inv.view(xTx.shape)
xTx_inv_xT = torch.matmul(xTx_inv, sum_points.unsqueeze(3))
plane_parameters = xTx_inv_xT.squeeze(3)
# generate mask for segment with area larger than 200
planar_area_thresh = self.opt.planar_thresh
valid_mask = ( area > planar_area_thresh ).float()
planar_mask = torch.gather(valid_mask, 1, segment.view(self.opt.batch_size, -1))
planar_mask = planar_mask.view(self.opt.batch_size, 1, self.opt.height, self.opt.width)
# the mask comes from the top edge and the right edge in depth2norm.
# nei = self.opt.d2n_nei
# planar_mask[:,:,:2*nei,:] = 0
# planar_mask[:,:,:,-2*nei:] = 0
planar_mask[:, :, :8, :] = 0
planar_mask[:, :, -8:, :] = 0
planar_mask[:, :, :, :8] = 0
planar_mask[:, :, :, -8:] = 0
outputs[("planar_mask", frame_id, scale)] = planar_mask
# segment unpooling
unpooled_parameters = []
for channel in range(3):
pooled_parameters_channel = plane_parameters[:, :, channel]
pooled_parameters_channel = pooled_parameters_channel.reshape(self.opt.batch_size, -1)
unpooled_parameter = torch.gather(pooled_parameters_channel, 1, segment.view(self.opt.batch_size, -1))
unpooled_parameters.append(unpooled_parameter.view(self.opt.batch_size, 1, self.opt.height, self.opt.width))
unpooled_parameters = torch.cat(unpooled_parameters, dim=1)
# recover depth from plane parameters
K_inv_dot_xy1 = torch.matmul(inputs[("inv_K", source_scale)][:, :3, :3],
self.backproject_depth[source_scale].pix_coords)
depth = 1. / (torch.sum(K_inv_dot_xy1 * unpooled_parameters.view(self.opt.batch_size, 3, -1), dim=1) + 1e-6)
# clip depth range
depth = torch.clamp(depth, self.opt.min_depth, self.opt.max_depth)
depth = depth.view(self.opt.batch_size, 1, self.opt.height, self.opt.width)
outputs[("planar_depth", frame_id, scale)] = depth
def compute_smooth_norm(self, inputs, outputs):
"""
in:
cam_points b*4*H*W tensor
vps b*6*3 tensor
out:
pred_norm b*3*H*W tensor
aligned_norm b*3*H*W tensor
"""
for scale in range(self.num_scales):
cam_points = outputs[("cam_points", scale)]
vps = inputs[("vps", 0, 0)]
pred_norm = depth2norm(cam_points, self.opt.height, self.opt.width, self.opt.d2n_nei)
outputs[("pred_norm", 0, scale)] = pred_norm
mmap, mmap_mask, mmap_mask_thresh = compute_mmap(self.opt.batch_size, pred_norm, vps, self.opt.height, self.opt.width, self.epoch, self.opt.d2n_nei)
if self.mmap_thresh_save_flag:
with open(os.path.join(self.log_path, 'eval_res_for_each_epoch.txt'), 'a') as f:
f.write('\nepoch {} time {}'.format(self.epoch, time.asctime( time.localtime(time.time()) )))
f.write('\nmmap_mask_thresh {}'.format(mmap_mask_thresh))
self.mmap_thresh_save_flag = False
aligned_norm = align_smooth_norm(self.opt.batch_size, mmap, vps, self.opt.height, self.opt.width)
outputs[("aligned_norm", 0, scale)] = aligned_norm
outputs[("mmap", 0, scale)] = mmap
outputs[("mmap_mask", 0, scale)] = mmap_mask
def compute_seg(self, inputs, outputs):
"""
inputs:
cam_points b, 4, H*W
aligned_norm b, 3, H, W
rgb b, 3, H, W
outputs:
seg b, 1, H, W
"""
nei = self.opt.d2n_nei
for scale in range(self.num_scales):
cam_points = outputs[("cam_points", scale)]
aligned_norm = outputs[("aligned_norm", 0, scale)]
rgb = inputs[("color_aug", 0, 0)]
# calculate D using aligned norm
D = compute_D(cam_points, aligned_norm)
D = D.reshape(self.opt.batch_size, self.opt.height, self.opt.width)
# move valid border from depth2norm neighborhood
rgb = rgb[:, :, 2*nei:, :-2*nei]
D = D[:, 2*nei:, :-2*nei]
aligned_norm = aligned_norm[:, :, 2*nei:, :-2*nei]
# comute cost
rgb_down = self.pdist(rgb[:, :, 1:], rgb[:, :, :-1])
rgb_right = self.pdist(rgb[:, :, :, 1:], rgb[:, :, :, :-1])
rgb_down = torch.stack([normalize(rgb_down[i]) for i in range(self.opt.batch_size)])
rgb_right = torch.stack([normalize(rgb_right[i]) for i in range(self.opt.batch_size)])
D_down = abs(D[:, 1:] - D[:, :-1])
D_right = abs(D[:, :, 1:] - D[:, :, :-1])
norm_down = self.pdist(aligned_norm[:, :, 1:], aligned_norm[:, :, :-1])
norm_right = self.pdist(aligned_norm[:, :, :, 1:], aligned_norm[:, :, :, :-1])
D_down = torch.stack([normalize(D_down[i]) for i in range(self.opt.batch_size)])
norm_down = torch.stack([normalize(norm_down[i]) for i in range(self.opt.batch_size)])
D_right = torch.stack([normalize(D_right[i]) for i in range(self.opt.batch_size)])
norm_right = torch.stack([normalize(norm_right[i]) for i in range(self.opt.batch_size)])
normD_down = D_down + norm_down
normD_right = D_right + norm_right
normD_down = torch.stack([normalize(normD_down[i]) for i in range(self.opt.batch_size)])
normD_right = torch.stack([normalize(normD_right[i]) for i in range(self.opt.batch_size)])
# get max from (rgb, normD)
cost_down = torch.stack([rgb_down, normD_down])
cost_right = torch.stack([rgb_right, normD_right])
cost_down, _ = torch.max(cost_down, 0)
cost_right, _ = torch.max(cost_right, 0)
# get dissimilarity map visualization
dst = cost_down[:, :, : -1] + cost_right[ :, :-1, :]
outputs[('seg_dst', 0, scale)] = dst
# felz_seg
cost_down_np = cost_down.detach().cpu().numpy()
cost_right_np = cost_right.detach().cpu().numpy()
segment = torch.stack([torch.from_numpy(felz_seg(normalize(cost_down_np[i]), normalize(cost_right_np[i]), 0, 0, self.opt.height-2*nei, self.opt.width-2*nei, scale =1,min_size=50)).cuda() for i in range(self.opt.batch_size)])
# pad the edges that were previously trimmed
segment += 1
segment = F.pad(segment, (0,2*nei,2*nei,0), "constant", 0)
outputs[("disp2seg", 0, scale)] = segment
def compute_losses(self, inputs, outputs):
"""Compute the reprojection and smoothness losses for a minibatch
"""
losses = {}
total_loss = 0
for scale in self.opt.scales:
loss = 0
reprojection_losses = []
sparse_reprojection_losses = []
source_scale = 0
disp = outputs[("disp", 0, scale)]
color = inputs[("color", 0, scale)]
target = inputs[("color", 0, source_scale)]
dso_target = outputs[("dso_color", 0, scale)]
# dso loss
for frame_id in self.opt.frame_ids_to_train[1:]:
dso_pred = outputs[("dso_color", frame_id, scale)]
sparse_reprojection_losses.append(self.compute_sparse_reprojection_loss(dso_pred, dso_target))
if len(self.opt.frame_ids_to_train) == 5:
dso_combined_1 = torch.cat((sparse_reprojection_losses[1], sparse_reprojection_losses[2]), dim=1)
dso_combined_2 = torch.cat((sparse_reprojection_losses[0], sparse_reprojection_losses[3]), dim=1)
dso_to_optimise_1, _ = torch.min(dso_combined_1, dim=1)
dso_to_optimise_2, _ = torch.min(dso_combined_2, dim=1)
dso_loss_1 = dso_to_optimise_1.mean()
dso_loss_2 = dso_to_optimise_2.mean()
loss += dso_loss_1 + dso_loss_2
losses["dso_loss_1/{}".format(scale)] = dso_loss_1
losses["dso_loss_2/{}".format(scale)] = dso_loss_2
else:
dso_combined_1 = torch.cat(sparse_reprojection_losses, dim=1)
dso_to_optimise_1, _ = torch.min(dso_combined_1, dim=1)
dso_loss_1 = dso_to_optimise_1.mean()
loss += dso_loss_1
losses["dso_loss_1/{}".format(scale)] = dso_loss_1
# smooth loss
mean_disp = disp.mean(2, True).mean(3, True)
norm_disp = disp / (mean_disp + 1e-7)
smooth_loss = get_smooth_loss(norm_disp, color)
loss += self.opt.disparity_smoothness * smooth_loss / (2 ** scale)
losses["smooth_loss/{}".format(scale)] = smooth_loss
# planar loss
if self.opt.using_disp2seg:
loss_planar_reg = 0.0
for frame_id in [0]:
pred_depth = outputs[("depth", frame_id, scale)]
planar_depth = outputs[("planar_depth", frame_id, scale)]
planar_mask = outputs[("planar_mask", frame_id, scale)]
assert torch.isnan(pred_depth).sum()==0, print(pred_depth)
if torch.any(torch.isnan(planar_depth)):
print('warning! nan in planar_depth!')
planar_depth = torch.where(torch.isnan(planar_depth), torch.full_like(planar_depth, 0), planar_depth)
pred_depth = torch.where(torch.isnan(planar_depth), torch.full_like(pred_depth, 0), pred_depth)
outputs[("planar_loss", frame_id, scale)] = torch.abs(pred_depth - planar_depth) * planar_mask
loss_planar_reg += torch.mean(outputs[("planar_loss", frame_id, scale)])
loss += loss_planar_reg * self.opt.lambda_planar_reg
losses["planar_reg_loss/{}".format(scale)] = loss_planar_reg
# norm loss
if self.opt.using_normloss:
loss_norm_reg = 0.0
for frame_id in [0]:
pred_norm = outputs[("pred_norm", frame_id, scale)]
aligned_norm = outputs[("aligned_norm", frame_id, scale)]
mmap_mask = outputs[("mmap_mask", frame_id, scale)]
if self.opt.using_disp2seg:
planar_mask = outputs[("planar_mask", frame_id, scale)]
normloss_mask = mmap_mask * planar_mask
else:
normloss_mask = mmap_mask
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
norm_loss_score = cos(pred_norm, aligned_norm)
if torch.any(torch.isnan(norm_loss_score)):
print('warning! nan is norm loss compute! set nan = 1')
norm_loss_score = torch.where(torch.isnan(norm_loss_score), torch.full_like(norm_loss_score, 1), norm_loss_score)
outputs[("norm_loss", frame_id, scale)] = (1 - norm_loss_score).unsqueeze(1) * normloss_mask
loss_norm_reg += torch.mean(outputs[("norm_loss", frame_id, scale)])
loss += loss_norm_reg * self.opt.lambda_norm_reg
losses["norm_reg_loss/{}".format(scale)] = loss_norm_reg
total_loss += loss
losses["loss/{}".format(scale)] = loss
total_loss /= self.num_scales
losses["loss"] = total_loss
return losses
def compute_sparse_reprojection_loss(self, pred, target):
"""Computes reprojection loss between a batch of predicted and target images
"""
abs_diff = torch.abs(target - pred)
l1_loss = abs_diff.mean(1, True)
l1_loss = l1_loss.mean(3, True)
ssim_loss = self.ssim_sparse(pred, target).mean(1, True)
reprojection_loss = 0.85 * ssim_loss + 0.15 * l1_loss
return reprojection_loss
def val(self):
"""Validate the model on a single minibatch
"""
self.set_eval()
errors = []
with torch.no_grad():
for ind, (data, gt_depth, K, K_inv) in enumerate(tqdm(self.val_dataloader)):
input_color = data.cuda()
output = self.models["depth"](self.models["encoder"](input_color))
pred_disp = F.interpolate(output[("disp", 0)], (gt_depth.shape[2], gt_depth.shape[3]))
pred_disp, _ = disp_to_depth(pred_disp, self.opt.min_depth, self.opt.max_depth)
pred_disp = pred_disp.cpu()[:, 0].numpy()
pred_depth = 1 / pred_disp
pred_depth = pred_depth[0]
gt_depth = gt_depth.data.numpy()[0, 0]
mask = gt_depth > 0
pred_depth = pred_depth[mask]
gt_depth = gt_depth[mask]
ratio = np.median(gt_depth) / np.median(pred_depth)
pred_depth *= ratio
pred_depth[pred_depth < self.opt.min_depth] = self.opt.min_depth
pred_depth[pred_depth > self.opt.max_depth] = self.opt.max_depth
errors.append(compute_errors(gt_depth, pred_depth))
mean_errors = np.array(errors).mean(0)
print("\n " + ("{:>8} | " * 8).format("abs_rel", "sq_rel", "rmse", "rmse_log", "lg10", "a1", "a2", "a3"))
print(("&{: 8.3f} " * 8).format(*mean_errors.tolist()) + "\\\\")
# write eval result to txt
with open(os.path.join(self.log_path, 'eval_res_for_each_epoch.txt'), 'a') as f:
f.write('\ntime {}'.format(time.asctime( time.localtime(time.time()) )))
f.write("\n " + ("{:>8} | " * 8).format("abs_rel", "sq_rel", "rmse", "rmse_log", "lg10", "a1", "a2", "a3")+'\n')
f.write(("&{: 8.3f} " * 8).format(*mean_errors.tolist()))
f.write('\n--------------------------------------------------------')
# write to tensorboard
writer = self.writers["val"]
for l, v in zip(["abs_rel", "sq_rel", "rmse", "rmse_log", "lg10", "a1", "a2", "a3"],
mean_errors.tolist()):
if l in ["abs_rel", "sq_rel", "rmse", "rmse_log", "lg10"]:
writer.add_scalar("error/{}".format(l), v, self.step)
else:
writer.add_scalar("acc/{}".format(l), v, self.step)
self.set_train()
def log_time(self, batch_idx, duration, losses):
"""Print a logging statement to the terminal
"""
samples_per_sec = self.opt.batch_size / duration
time_sofar = time.time() - self.start_time
training_time_left = (
self.num_total_steps / self.step - 1.0) * time_sofar if self.step > 0 else 0
print_string = "epoch {:>3} | batch {:>6} | examples/s: {:5.1f}" + \
" | loss: {:.5f} | time elapsed: {} | time left: {}"
print(print_string.format(self.epoch, batch_idx, samples_per_sec, losses["loss"].cpu().data,
sec_to_hm_str(time_sofar), sec_to_hm_str(training_time_left)))
writer = self.writers["train"]
for l, v in losses.items():
writer.add_scalar("loss/{}".format(l), v, self.step)
def log(self, mode, inputs, outputs, losses):
"""Write an event to the tensorboard events file
"""
writer = self.writers[mode]
for l, v in losses.items():
writer.add_scalar("loss/{}".format(l), v, self.step)
for j in range(min(1, self.opt.batch_size)): # write a maxmimum of four images
'''
writer.add_image(
"svo_{}/{}".format(0, j),
inputs['svo_map'][j].unsqueeze(0).data, self.step)
writer.add_image(
"svo_noise_{}/{}".format(0, j),
inputs['svo_map_noise'][j].unsqueeze(0).data, self.step)
'''
for s in [0]:
if self.opt.using_disp2seg:
writer.add_image(
"planar_depth_{}/{}".format(s, j),
normalize_image(torch.clamp(outputs[("planar_depth", 0, s)][j], outputs[("depth", 0, s)][j].min().item(), outputs[("depth", 0, s)][j].max().item())), self.step)
writer.add_image(
"planar_mask_{}/{}".format(s, j),
outputs[("planar_mask", 0, s)][j], self.step)
for frame_id in [0]:
if self.opt.using_disp2seg:
writer.add_image(
"planar_loss_{}/{}".format(s, j),
normalize_image(outputs[("planar_loss", 0, s)][j]), self.step)
if self.opt.using_disp2seg:
writer.add_image(
"segment_{}/{}".format(s, j),
normalize_image(outputs[("disp2seg", 0, s)][j].unsqueeze(0)), self.step)
if self.opt.using_normloss or self.opt.using_disp2seg:
writer.add_image(
"pred_norm_{}_{}/{}".format(frame_id, s, j),
normalize_image(outputs[("pred_norm", frame_id, s)][j]), self.step)
writer.add_image(
"smooth_norm_{}_{}/{}".format(frame_id, s, j),
normalize_image(outputs[("aligned_norm", frame_id, s)][j]), self.step)
if self.opt.using_normloss:
writer.add_image(
"norm_loss_{}_{}/{}".format(frame_id, s, j),
normalize_image(outputs[("norm_loss", frame_id, s)][j]), self.step)
writer.add_image(
"color_{}_{}/{}".format(frame_id, s, j),
inputs[("color", frame_id, s)][j].data, self.step)
writer.add_image(
"depth_{}_{}/{}".format(frame_id, s, j),
normalize_image(outputs[("depth", frame_id, s)][j]), self.step)
def save_opts(self):
"""Save options to disk so we know what we ran this experiment with
"""
models_dir = os.path.join(self.log_path, "models")
if not os.path.exists(models_dir):
os.makedirs(models_dir)
to_save = self.opt.__dict__.copy()
with open(os.path.join(models_dir, 'opt_{}.json'.format(self.opt.start_epoch)), 'w') as f:
json.dump(to_save, f, indent=2)
def save_model(self):
"""Save model weights to disk
"""
save_folder = os.path.join(self.log_path, "models", "weights_{}".format(self.epoch))
if not os.path.exists(save_folder):
os.makedirs(save_folder)
for model_name, model in self.models.items():
save_path = os.path.join(save_folder, "{}.pth".format(model_name))
to_save = model.state_dict()
if model_name == 'encoder':
# save the sizes - these are needed at prediction time
to_save['height'] = self.opt.height
to_save['width'] = self.opt.width
torch.save(to_save, save_path)
def load_model(self):
"""Load model(s) from disk
"""
self.opt.load_weights_folder = os.path.expanduser(self.opt.load_weights_folder)
assert os.path.isdir(self.opt.load_weights_folder), \
"Cannot find folder {}".format(self.opt.load_weights_folder)
print("loading model from folder {}".format(self.opt.load_weights_folder))
for n in self.opt.models_to_load:
print("Loading {} weights...".format(n))
path = os.path.join(self.opt.load_weights_folder, "{}.pth".format(n))
model_dict = self.models[n].state_dict()
pretrained_dict = torch.load(path)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.models[n].load_state_dict(model_dict)