forked from carla-simulator/scenario_runner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcar_model_torch_tune.py
400 lines (327 loc) · 12.9 KB
/
car_model_torch_tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
'''
Try to use ray.tune for grid search, half way done
ref: https://github.com/ray-project/ray/tree/master/python/ray/tune/examples
'''
import os, sys
import numpy as np
import argparse
import matplotlib.pyplot as plt
import math
import time
import csv
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transforms
from sklearn.model_selection import train_test_split
import ray
from ray import tune
from ray.tune import track
from ray.tune.schedulers import AsyncHyperBandScheduler
from NN_controller import ControlDS
from e2c_NN import ZUData
torch.set_default_dtype(torch.float32)
EPOCH_SIZE = 512
TEST_SIZE = 256
# build the network
class Dyn_NN(nn.Module):
def __init__(self, nx=4, ny=2, nh=50):
super(Dyn_NN, self).__init__()
self.layers = nn.Sequential(
nn.Linear(nx, nh),
nn.ReLU(),
nn.Linear(nh, ny)
)
def forward(self, x):
x = x.view(x.size(0), -1)
return self.layers(x)
def train(model, optimizer, data_loader, device, loss_fn=F.nll_loss()):
model.train()
train_losses = []
for i, (data, target) in enumerate(data_loader):
if i*len(data) > EPOCH_SIZE:
return
data, target = data.to(device), trage.to(device)
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
train_losses.append(loss.item())
return np.mean(train_losses)
def test(model, data_loader, device, loss_fn=F.nll_loss()):
model.eval()
test_losses = []
with torch.no_grad():
for i, (data, target) in enumerate(data_loader):
if i*len(data) > EPOCH_SIZE:
break
data, target = data.to(device), trage.to(device)
output = model(data)
loss = loss_fn(output, y)
test_losses.append(loss.item())
return np.mean(test_losses)
def get_data_loaders(csv="long_states_dt.csv"):
result = []
line_count = 0
with open(csv) as csv_file:
csv_reader = csv.reader(csv_file)
for row in csv_reader:
result.append([float(i) for i in row])
line_count += 1
print("process {} lines".format(line_count))
# Note: if shuffle, traj in testing will not be continuous
# random.shuffle(result) # shuffle in the first dimension only
result = np.array(result)
# input
yaw = (result[:,7]/max_yaw_val).reshape([-1, 1])
speed = (np.sqrt(result[:,9]**2 + result[:,10]**2)/max_speed_val).reshape([-1, 1])
command_data = result[:,:2].reshape([-1, 2])
dt = result[:,-1].reshape([-1, 1])
input_data = np.concatenate((yaw, speed, command_data, dt), axis=1).astype(np.float32)
# output
delta_x = (result[:,12] - result[:,3]).reshape([-1, 1])
delta_y = (result[:,13] - result[:,4]).reshape([-1, 1])
speed_next = (np.sqrt(result[:,18]**2 + result[:,19]**2)/max_speed_val).reshape([-1, 1])
delta_v = (speed_next - speed).reshape([-1, 1])
delta_theta = (result[:,16] - result[:,7]).reshape([-1, 1])
output_data = np.concatenate((delta_x, delta_y, delta_v, delta_theta), axis=1).astype(np.float32)
# split the train and test datasets
train_ratio = 0.6
valid_ratio = 0.2
test_ratio = 1 - train_ratio - valid_ratio
train_size = int(train_ratio*line_count)
valid_size = int(valid_ratio*line_count)
test_size = int(test_ratio*line_count)
x_train = input_data[0:train_size,:]
y_train = output_data[0:train_size,:]
x_valid = input_data[train_size:train_size+valid_size,:]
y_valid = output_data[train_size:train_size+valid_size,:]
x_test = input_data[train_size+valid_size: train_size+valid_size+test_size,:]
y_test = output_data[train_size+valid_size: train_size+valid_size+test_size,:]
train_dataset = ZUData(z=x_train, u=y_train)
valid_dataset = ZUData(z=x_valid, u=y_valid)
test_dataset = ZUData(z=x_test, u=y_test)
train_loader = DataLoader(dataset=train_dataset, batch_size=128, shuffle=True)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=128, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=128, shuffle=False)
return train_loader, valid_loader, test_loader
def train_dyn(config):
# use config to choose from grid search
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train_loader, valid_loader, test_loader = get_data_loaders(csv="long_states_dt.csv")
model = Dyn_NN(nx=5, ny=4, nh=50)
optimizer = torch.optim.SGD(
model.parameters(), lr=config["lr"], momentum=config["momentum"])
while True:
train_loss = train(model, optimizer, train_loader, device)
test_loss = test(model, test_loader, device)
# TODO: check how to track loss instead of acc
track.log(mean_loss=test_loss)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="PyTorch Car dynamics model")
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing")
parser.add_argument(
"--ray-redis-address",
help="Address of Ray cluster for seamless distributed execution.")
args = parser.parse_args()
if args.ray_redis_address:
ray.init(redis_address=args.ray_redis_address)
sched = AsyncHyperBandScheduler(
time_attr="training_iteration", metric="mean_loss")
# main difference
tune.run(
train_dyn,
name="exp",
scheduler=sched,
stop={
"mean_loss": 100,
"training_iteration": 100 if args.smoke_test else 500
},
resources_per_trial={
"cpu": 2,
"gpu": 1
},
num_samples=1 if args.smoke_test else 10,
config={
"lr": tune.sample_from(lambda spec: 10**(-10 * np.random.rand())),
"momentum": tune.uniform(0.1, 0.9)
})
# config dataset path
# Train a dynamics model
MLP_model_path = 'models/MLP/Dyn_model_NN_SGD.pth'
MLP_dict_path = MLP_model_path.replace("_model_", "_dict_")
if_print = True
# normalize data
max_pos_val = 500
max_yaw_val = 180
max_speed_val = 40
plot = True
train = True
# read and parse csv data file
# row = list(np.hstack((np.array([control.throttle, control.steer, control.brake]), \ [0-2]
# transform_to_arr(cur_loc),[3-8] np.array([cur_vel.x, cur_vel.y, cur_vel.z]),\ [9-11]
# transform_to_arr(next_loc), [12-17] np.array([next_vel.x, next_vel.y, next_vel.z]), \ [18-20]
# np.array([cur_loc.location.x, cur_loc.location.y])- np.array([cur_wp.transform.location.x, cur_wp.transform.location.y]), \
# future_wps_np.flatten(), \
# np.array([next_loc.location.x, next_loc.location.y])- np.array([cur_wp.transform.location.x, cur_wp.transform.location.y]), np.array(delta_t))))
result = []
line_count = 0
with open("long_states_dt.csv") as csv_file:
csv_reader = csv.reader(csv_file)
for row in csv_reader:
result.append([float(i) for i in row])
line_count += 1
print("process {} lines".format(line_count))
# Note: if shuffle, traj in testing will not be continuous
# random.shuffle(result) # shuffle in the first dimension only
result = np.array(result)
# input
yaw = (result[:,7]/max_yaw_val).reshape([-1, 1])
speed = (np.sqrt(result[:,9]**2 + result[:,10]**2)/max_speed_val).reshape([-1, 1])
command_data = result[:,:2].reshape([-1, 2])
dt = result[:,-1].reshape([-1, 1])
input_data = np.concatenate((yaw, speed, command_data, dt), axis=1).astype(np.float32)
# output
delta_x = (result[:,12] - result[:,3]).reshape([-1, 1])
delta_y = (result[:,13] - result[:,4]).reshape([-1, 1])
speed_next = (np.sqrt(result[:,18]**2 + result[:,19]**2)/max_speed_val).reshape([-1, 1])
delta_v = (speed_next - speed).reshape([-1, 1])
delta_theta = (result[:,16] - result[:,7]).reshape([-1, 1])
output_data = np.concatenate((delta_x, delta_y, delta_v, delta_theta), axis=1).astype(np.float32)
# split the train and test datasets
train_ratio = 0.6
valid_ratio = 0.2
test_ratio = 1 - train_ratio - valid_ratio
train_size = int(train_ratio*line_count)
valid_size = int(valid_ratio*line_count)
test_size = int(test_ratio*line_count)
x_train = input_data[0:train_size,:]
y_train = output_data[0:train_size,:]
x_valid = input_data[train_size:train_size+valid_size,:]
y_valid = output_data[train_size:train_size+valid_size,:]
x_test = input_data[train_size+valid_size: train_size+valid_size+test_size,:]
y_test = output_data[train_size+valid_size: train_size+valid_size+test_size,:]
train_dataset = ZUData(z=x_train, u=y_train)
valid_dataset = ZUData(z=x_valid, u=y_valid)
test_dataset = ZUData(z=x_test, u=y_test)
train_loader = DataLoader(dataset=train_dataset, batch_size=128, shuffle=True)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=128, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=128, shuffle=False)
if train:
model = Dyn_NN(nx=5, ny=4) # nx: yaw, speed, throttle, steer, dt; ny: delta_x, delta_y
print(model)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
loss_fn = torch.nn.MSELoss()
# config training & validation
epochs = 500
print("iterate over epochs")
train_loss_ep = []
valid_loss_ep = []
for epoch in range(epochs):
model.train()
train_losses = []
valid_losses = []
# train
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(x)
loss = loss_fn(outputs, y)
loss.backward()
optimizer.step()
train_losses.append(loss.item())
model.eval()
# validate
with torch.no_grad():
for i, (x, y) in enumerate(valid_loader):
outputs = model(x)
loss = loss_fn(outputs, y)
valid_losses.append(loss.item())
mean_train = np.mean(train_losses)
mean_valid = np.mean(valid_losses)
print('epoch : {}, train loss : {:.4f}, valid loss : {:.4f}'\
.format(epoch+1, mean_train, mean_valid))
train_loss_ep.append(mean_train)
valid_loss_ep.append(mean_valid)
model.eval()
# torch.save(model, MLP_model_path)
print("save state_dict")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss_fn': loss_fn,
'train_loss_ep': train_loss_ep,
'valid_loss_ep':valid_loss_ep
}, MLP_dict_path)
print("save the entire model")
torch.save(model, MLP_model_path)
# Load for resuming training
print("load state_dict")
model = Dyn_NN(nx=5, ny=4)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
checkpoint = torch.load(MLP_dict_path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss_fn']
train_loss_ep = checkpoint['train_loss_ep']
valid_loss_ep = checkpoint['valid_loss_ep']
model.eval()
# - or -
# model.train()
# helper function for plots
def connectpoints(x,y,i,f=''):
# x, y are series; p1, p2 are indexer
x1, x2 = x[i][0], y[i][0]
y1, y2 = x[i][1], y[i][1]
plt.plot([x1,x2],[y1,y2],f)
if plot:
# plot the loss values
plt.plot(train_loss_ep)
plt.plot(valid_loss_ep)
plt.xlabel('Epoch number')
plt.ylabel('Loss')
plt.legend(['Train', "Validation"], loc='upper left')
plt.savefig('models/MLP/{}_loss.png'.format(MLP_model_path.split("/")[-1][:-4]))
plt.show()
# plot the predicted trajectories
# test the model, random choose a sample, and plot the ground truth trajectory, and predicted trajectory
test_horizon = 5
# TODO data may be of different episode, resulting in discontinuous ground truth traj
test_index = random.randint(0,len(test_dataset)-1-test_horizon)
test_index = 932
print("test_index", test_index)
current_states = []
pred_states = []
next_states = []
for i in range(train_size+valid_size+test_index, train_size+valid_size+test_index+test_horizon):
ground_truth = result[i]
current_state = result[i, 3:5].reshape([-1,2]).squeeze()
current_input = np.concatenate((yaw[i], speed[i], command_data[i], dt[i])).astype(np.float32).reshape([1,-1])
input_tensor = torch.tensor(current_input)
current_output = model(input_tensor).data.cpu().numpy()[0]
pred_state = (current_state + current_output[:2]).reshape([-1,2]).squeeze()
next_state = result[i, 12:14].reshape([-1,2]).squeeze()
# print("current_state", current_state)
# print("pred_state", pred_state)
# print("next_state", next_state)
# append the state to traj
current_states.append(current_state)
pred_states.append(pred_state)
next_states.append(next_state)
current_states = np.array(current_states)
pred_states = np.array(pred_states)
next_states = np.array(next_states)
plt.scatter(current_states[:,0], current_states[:,1],c='b', marker='o', linewidth=2,linestyle='dashed', label='current')
plt.scatter(next_states[:,0], next_states[:,1],c='k', marker='D',linewidth=2, label='next')
plt.scatter(pred_states[:,0], pred_states[:,1],c='r', marker='X',linewidth=2, label='pred')
plt.legend(loc='upper left')
for i in range(test_horizon):
connectpoints(current_states,next_states,i, f='k-')
connectpoints(current_states,pred_states,i, f='r-')
plt.savefig('models/MLP/{}_pred_traj.png'.format(MLP_model_path.split("/")[-1][:-4]))
plt.show()