-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
260 lines (211 loc) · 9.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import pandas as pd
import numpy as np
import csv
from sklearn.metrics.pairwise import cosine_similarity
def CarData_preprocessing():
User_num = 60
Item_num = 10
ComparisonMatrix = np.zeros((User_num, Item_num, Item_num))
filename = "./Data/CarDataset/prefs1.csv"
# Open the CSV file and read line by line
with open(filename, newline='') as csvfile:
reader = csv.reader(csvfile)
next(reader) # Skip the header row
for row in reader:
UserID = int(row[0]) - 1
Item1ID = int(row[1]) - 1
Item2ID = int(row[2]) - 1
ComparisonMatrix[UserID][Item1ID][Item2ID] = 1
ComparisonMatrix[UserID][Item2ID][Item1ID] = 0
filename = "./Data/CarDataset/prefs1.csv"
with open(filename, "w", newline="") as csvfile:
writer = csv.writer(csvfile)
header = ["User_ID", "Item1_ID", "Item2_ID", "PairwiseScore"]
writer.writerow(header)
for user in range(User_num):
for item1 in range(Item_num):
for item2 in range(item1 + 1, Item_num):
List = [user + 1, item1 + 1, item2 + 1, ComparisonMatrix[user][item1][item2]]
writer.writerow(List)
PairwiseRates = pd.read_csv("./Data/CarDataset/prefs1.csv") # .to_numpy()
# Item_pairs is a list containing paired items
ii, iii = PairwiseRates.shape
Item_pairs = []
for i in range(ii):
Item_pairs.append((PairwiseRates.Item1_ID[i], PairwiseRates.Item2_ID[i]))
unique_Item_pairs = list(dict.fromkeys(Item_pairs))
print("*")
# To make access to indexes easier, dictionaries are used:
UniqueUserIDs = np.unique(PairwiseRates.User_ID)
unique_Item_pairs
dict_index2user = {}
keys = range(len(UniqueUserIDs))
values = UniqueUserIDs
for i in keys:
dict_index2user[values[i]] = i
dict_index2itempairs = {}
keys = range(len(unique_Item_pairs))
values = unique_Item_pairs
for i in keys:
dict_index2itempairs[values[i]] = i
print("**")
# Mtrix R: Rows:unique users Columns: Unique Item pairs
R = np.ones([len(UniqueUserIDs), len(unique_Item_pairs)])
for row in range(len(PairwiseRates)):
u = dict_index2user[PairwiseRates.User_ID[row]]
i = dict_index2itempairs[(
PairwiseRates.Item1_ID[row], PairwiseRates.Item2_ID[row])]
R[u][i] = PairwiseRates.PairwiseScore[row]
return R
def FoodData_preprocessing():
User_num = 20
Item_num = 6
ComparisonMatrix = np.zeros((User_num, Item_num, Item_num))
ComparisonMatrix[0][:][:] = pd.read_csv("./FoodData/User1.csv", index_col=0).to_numpy()
ComparisonMatrix[1][:][:] = pd.read_csv("./FoodData/User2.csv", index_col=0).to_numpy()
ComparisonMatrix[2][:][:] = pd.read_csv("./FoodData/User3.csv",index_col=0).to_numpy()
ComparisonMatrix[3][:][:] = pd.read_csv("./FoodData/User4.csv", index_col=0).to_numpy()
ComparisonMatrix[4][:][:] = pd.read_csv("./FoodData/User5.csv", index_col=0).to_numpy()
ComparisonMatrix[5][:][:] = pd.read_csv("./FoodData/User6.csv", index_col=0).to_numpy()
ComparisonMatrix[6][:][:] = pd.read_csv("./FoodData/User7.csv", index_col=0).to_numpy()
ComparisonMatrix[7][:][:] = pd.read_csv("./FoodData/User8.csv",index_col=0).to_numpy()
ComparisonMatrix[8][:][:] = pd.read_csv("./FoodData/User9.csv", index_col=0).to_numpy()
ComparisonMatrix[9][:][:] = pd.read_csv("./FoodData/User10.csv", index_col=0).to_numpy()
ComparisonMatrix[10][:][:] = pd.read_csv("./FoodData/User11.csv", index_col=0).to_numpy()
ComparisonMatrix[11][:][:] = pd.read_csv("./FoodData/User12.csv", index_col=0).to_numpy()
ComparisonMatrix[12][:][:] = pd.read_csv("./FoodData/User13.csv",index_col=0).to_numpy()
ComparisonMatrix[13][:][:] = pd.read_csv("./FoodData/User14.csv", index_col=0).to_numpy()
ComparisonMatrix[14][:][:] = pd.read_csv("./FoodData/User15.csv", index_col=0).to_numpy()
ComparisonMatrix[15][:][:] = pd.read_csv("./FoodData/User16.csv",index_col=0).to_numpy()
ComparisonMatrix[16][:][:] = pd.read_csv("./FoodData/User17.csv", index_col=0).to_numpy()
ComparisonMatrix[17][:][:] = pd.read_csv("./FoodData/User.csv",index_col=0).to_numpy()
ComparisonMatrix[18][:][:] = pd.read_csv("./FoodData/User18.csv",index_col=0).to_numpy()
ComparisonMatrix[19][:][:] = pd.read_csv("./FoodData/User19.csv", index_col=0).to_numpy()
filename = "./PairwiseRates_Food.csv"
with open(filename, "w", newline="") as csvfile:
writer = csv.writer(csvfile)
header = ["User_ID", "Item1_ID", "Item2_ID", "PairwiseScore"]
writer.writerow(header)
for user in range(User_num):
for item1 in range(Item_num):
for item2 in range(item1 + 1, Item_num):
List = [user + 1, item1 + 1, item2 + 1, ComparisonMatrix[user][item1][item2]]
writer.writerow(List)
PairwiseRates = pd.read_csv("./PairwiseRates_Food.csv") # .to_numpy()
# Item_pairs is a list containing paired items
ii, iii = PairwiseRates.shape
Item_pairs = []
for i in range(ii):
Item_pairs.append((PairwiseRates.Item1_ID[i], PairwiseRates.Item2_ID[i]))
unique_Item_pairs = list(dict.fromkeys(Item_pairs))
print("*")
# To make access to indexes easier, dictionaries are used:
UniqueUserIDs = np.unique(PairwiseRates.User_ID)
unique_Item_pairs
dict_index2user = {}
keys = range(len(UniqueUserIDs))
values = UniqueUserIDs
for i in keys:
dict_index2user[values[i]] = i
dict_index2itempairs = {}
keys = range(len(unique_Item_pairs))
values = unique_Item_pairs
for i in keys:
dict_index2itempairs[values[i]] = i
print("**")
# Mtrix R: Rows:unique users Columns: Unique Item pairs
R = np.ones([len(UniqueUserIDs), len(unique_Item_pairs)])
for row in range(len(PairwiseRates)):
u = dict_index2user[PairwiseRates.User_ID[row]]
i = dict_index2itempairs[(
PairwiseRates.Item1_ID[row], PairwiseRates.Item2_ID[row])]
R[u][i] = PairwiseRates.PairwiseScore[row]
return R
# Matrix Factorization
def mf(R, k, n_epoch=5000, lr=.0003, l2=.04): # n_epoch=5000, lr=.0003
print("Rnning Matrix Factorization....")
tol = .001 # Tolerant loss.
m, n = R.shape
R2 = R - 10
# Initialize the embedding weights.
P = np.random.rand(m, k)
Q = np.random.rand(n, k)
for epoch in range(n_epoch):
# Update weights by gradients.
for u, i in zip(*R2.nonzero()):
err_ui = R[u, i] - P[u, :].dot(Q[i, :])
for j in range(k):
P[u][j] += lr * (2 * err_ui * Q[i][j] - l2 / 2 * P[u][j])
Q[i][j] += lr * (2 * err_ui * P[u][j] - l2 / 2 * Q[i][j])
# compute the loss.
E = (R - P.dot(Q.T)) ** 2
obj = E[R.nonzero()].sum() + lr * ((P ** 2).sum() + (Q ** 2).sum())
if obj < tol:
break
# Saving the embeddings:
pd.DataFrame(P).to_csv('./User_Embedding.csv', header=True, index=True)
pd.DataFrame(Q).to_csv('./PairItems_Embedding.csv', header=True, index=True)
return P, Q
# Clustering with Shapley value
def calculate_diversity(User_Embedding, X):
"""
Calculate the diversity of each user not in the cluster X
based on the cosine similarity kernel matrix.
Parameters:
- User_Embedding: 2D array containing user vectors
- X: Current cluster
Returns:
- diversity: Array containing the diversity values for each user not in X
"""
n = User_Embedding.shape[0]
similarity_matrix = cosine_similarity(User_Embedding)
L_X = similarity_matrix[X][:, X]
L_X_inv = np.linalg.inv(L_X)
diversity = np.zeros(n)
for i in range(n):
if i not in X:
L_i_X = similarity_matrix[i][X]
L_i_i = similarity_matrix[i][i]
diversity[i] = np.log(L_i_i - np.dot(L_i_X, np.dot(L_X_inv, L_i_X)))
return diversity
def cluster_users(User_Embedding, threshold=0, max_users=None):
"""
Cluster users based on the inverse of diversity in a Determinantal Point Process (DPP) kernel matrix.
Parameters:
- User_Embedding: 2D array containing user vectors
- threshold: Diversity threshold to stop clustering (default: 0)
- max_users: Maximum number of users in a cluster (default: None)
Returns:
- clusters: List of clusters, where each cluster is represented as a list of user indices
"""
n = User_Embedding.shape[0]
clusters = []
remaining_users = list(range(n))
while remaining_users:
current_cluster = []
# Calculate diversity for each user not in any cluster
diversity = calculate_diversity(User_Embedding, [])
# Find the user with the least diversity and add it to a new cluster
next_user_idx = np.argmin(diversity[remaining_users])
next_user = remaining_users[next_user_idx]
current_cluster.append(next_user)
remaining_users.pop(next_user_idx)
while True:
# Calculate diversity for each user not in the current cluster
diversity = calculate_diversity(User_Embedding, current_cluster)
# Check if remaining_users is empty before finding next_user
if remaining_users:
next_user_idx = np.argmin(diversity[remaining_users])
next_user = remaining_users[next_user_idx]
remaining_users.pop(next_user_idx)
else:
break
# Add the next_user to the current cluster
current_cluster.append(next_user)
# Check stopping conditions
print(diversity[next_user])
if (diversity[next_user] >= threshold) or \
(max_users is not None and len(current_cluster) >= max_users):
clusters.append(current_cluster)
break
return clusters