-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCarDataset_UIMatrix.py
92 lines (73 loc) · 3.28 KB
/
CarDataset_UIMatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import csv
import random
# Read pairwise data from the CSV file, skipping the header
pairwise_data = []
with open("./Data/CarDataset/prefs1.csv", newline='') as csvfile:
reader = csv.reader(csvfile)
next(reader) # Skip the header row
for row in reader:
pairwise_data.append(list(map(int, row)))
# Extract unique user IDs and item IDs
user_ids = set(row[0] for row in pairwise_data)
item_ids = set(row[1] for row in pairwise_data) | set(row[2] for row in pairwise_data)
# Create a dictionary to map item IDs to column indices in the matrix
item_to_index = {item_id: index for index, item_id in enumerate(sorted(item_ids))}
# Initialize a dictionary to store user-item matrices
user_item_matrices = {}
# Iterate over all users to generate their user-item matrices
for user_id in user_ids:
# Create the user-item matrix
user_item_matrix = np.zeros((len(item_ids), len(item_ids)))
# Populate the matrix based on the pairwise data for the current user
for row in pairwise_data:
current_user_id, item1_id, item2_id, is_control = row
if current_user_id != user_id:
continue # Skip rows not corresponding to the current user
item1_index = item_to_index[item1_id]
item2_index = item_to_index[item2_id]
if is_control == 0:
user_item_matrix[item1_index, item2_index] = 1
user_item_matrix[item2_index, item1_index] = 0
elif is_control == 1:
user_item_matrix[item1_index, item2_index] = 0
user_item_matrix[item2_index, item1_index] = 1
# Set diagonal values to 0.5
np.fill_diagonal(user_item_matrix, 0.5)
# Store the user-item matrix in the dictionary using the user ID as the key
user_item_matrices[user_id] = user_item_matrix
#print( user_item_matrices[user_id])
# Initialize a dictionary to store user ratings
user_ratings_real = {}
# Calculate average ratings for each user
for user_id, user_item_matrix in user_item_matrices.items():
avg_ratings = np.mean(user_item_matrix, axis=1)
user_ratings_real[f'User{user_id}'] = avg_ratings.tolist()
print(user_ratings_real)
# Shuffle the list of user IDs
shuffled_user_ids = list(user_ratings_real.keys())
random.shuffle(shuffled_user_ids)
# Define the sizes of each group
group_sizes = [3,4,5,6,7] # Adjust this list to set the desired sizes for each group
# Initialize a list to store the groups
groups = []
# Divide the shuffled user IDs into groups with the specified sizes
start_index = 0
for size in group_sizes:
group = shuffled_user_ids[start_index: start_index + size]
groups.append(group)
start_index += size
# Initialize dictionary to store grouped user ratings
user_ratings = {}
# Populate grouped user ratings
for i, group in enumerate(groups, start=1):
user_ratings[f'Group{i}'] = {user: user_ratings_real[user] for user in group}
print(user_ratings)
# Calculate the mean for each item in each group
group_means = {}
for group, users in user_ratings.items():
num_users = len(users)
group_means[group] = np.mean(list(users.values()), axis=0)
# Convert the mean ratings to tuples
ground_truth_group_ratings = {group: tuple(mean_ratings) for group, mean_ratings in group_means.items()}
print('ground_truth_group_ratings=',ground_truth_group_ratings)