-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathrun_pipeline.sh
executable file
·188 lines (154 loc) · 5.81 KB
/
run_pipeline.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/bin/bash
SCRIPT=`realpath -s $0`
export PIPEDIR=`dirname $SCRIPT`
CPU="4" # number of CPUs to use
MEM="32" # max memory (in GB)
# Inputs:
IN="$1" # input.fasta
WDIR=`realpath -s $2` # working folder
LEN=`tail -n1 $IN | wc -m`
mkdir -p $WDIR/log
############################################################
# 1. generate MSAs
############################################################
if [ ! -s $WDIR/t000_.msa0.a3m ]
then
echo "Running HHblits"
$PIPEDIR/scripts/make_msa.sh $IN $WDIR $CPU $MEM > $WDIR/log/make_msa.stdout 2> $WDIR/log/make_msa.stderr
fi
############################################################
# 2. predict secondary structure
############################################################
if [ ! -s $WDIR/t000_.ss2 ]
then
echo "Running PSIPRED"
$PIPEDIR/scripts/make_ss.sh $WDIR/t000_.msa0.a3m $WDIR/t000_.ss2 > $WDIR/log/make_ss.stdout 2> $WDIR/log/make_ss.stderr
fi
############################################################
# 3. search for templates
############################################################
DB="/projects/ml/TrRosetta/pdb100_2020Mar11/pdb100_2020Mar11"
if [ ! -s $WDIR/t000_.hhr ]
then
echo "Running hhsearch"
DB="$PIPEDIR/pdb100_2020Mar11/pdb100_2020Mar11"
HH="hhsearch -b 50 -B 500 -z 50 -Z 500 -mact 0.05 -cpu $CPU -maxmem $MEM -aliw 100000 -e 100 -p 5.0 -d $DB"
cat $WDIR/t000_.ss2 $WDIR/t000_.msa0.a3m > $WDIR/t000_.msa0.ss2.a3m
$HH -i $WDIR/t000_.msa0.ss2.a3m -o $WDIR/t000_.hhr -v 0 > $WDIR/log/hhsearch.stdout 2> $WDIR/log/hhsearch.stderr
fi
############################################################
# 4. generate TAPE features
############################################################
if [ ! -s $WDIR/t000_.tape.npy ]
then
echo "Generating TAPE features"
python $PIPEDIR/tape/get_embeddings.py $IN $WDIR/t000_.tape.npy
fi
############################################################
# 5. predict distances and orientations
############################################################
if [ $LEN -gt 700 ]
then
crop="discont"
else
crop="cont"
fi
# run msa-net
if [ ! -s $WDIR/t000_.msa.npz ]
then
echo "Running sequence-based trRosetta"
python $PIPEDIR/trRosetta/predict.py \
-m $PIPEDIR/weights \
-i $WDIR/t000_.msa0.a3m \
-o $WDIR/t000_.msa.npz \
--tape $WDIR/t000_.tape.npy \
--crop $crop > $WDIR/log/msa-net.stdout 2> $WDIR/log/msa-net.stderr
fi
# tbm-net
if [ ! -s $WDIR/t000_.tbm.npz ]
then
python $PIPEDIR/trRosetta/predict.py \
-m $PIPEDIR/weights \
-i $WDIR/t000_.msa0.a3m \
-o $WDIR/t000_.tbm.npz \
--tape $WDIR/t000_.tape.npy \
--hhr $WDIR/t000_.hhr \
--crop $crop > $WDIR/log/tbm-net.stdout 2> $WDIR/log/tbm-net.stderr
fi
############################################################
# 6. perform modeling
############################################################
if [ ! -f $WDIR/DONE_iter0 ]
then
mkdir -p $WDIR/pdb-msa
mkdir -p $WDIR/pdb-tbm
for m in 0 1 2
do
for p in 0.05 0.15 0.25 0.35 0.45
do
for ((i=0;i<1;i++))
do
echo "python -u $PIPEDIR/folding/RosettaTR.py -r 3 -pd $p -m $m -sg 7,3 $WDIR/t000_.msa.npz $IN $WDIR/pdb-msa/model${i}_${m}_${p}.pdb"
echo "python -u $PIPEDIR/folding/RosettaTR.py -r 3 -pd $p -m $m -sg 7,3 $WDIR/t000_.tbm.npz $IN $WDIR/pdb-tbm/model${i}_${m}_${p}.pdb"
done
done
done > $WDIR/parallel.list
echo "Folding trRosetta models"
parallel -j $CPU < $WDIR/parallel.list > $WDIR/log/folding.stdout 2> $WDIR/log/folding.stderr
touch $WDIR/DONE_iter0
fi
############################################################
# 7. Run trRefine
############################################################
if [ ! -s $WDIR/t000_.trRefine.npz ]
then
echo "Running trRefine"
cd $WDIR
python $PIPEDIR/trRefine/run_trRefine_DAN.py -msa_npz $WDIR/t000_.msa.npz \
-tbm_npz $WDIR/t000_.tbm.npz -pdb_dir_s $WDIR/pdb-msa $WDIR/pdb-tbm \
-a3m_fn $WDIR/t000_.msa0.a3m -hhr_fn $WDIR/t000_.hhr \
-n_core $CPU > $WDIR/log/trRefine.stdout 2> $WDIR/log/trRefine.stderr
cd -
fi
############################################################
# 8. Run modeling w/ trRefine output
############################################################
if [ ! -f $WDIR/DONE_iter1 ]
then
mkdir -p $WDIR/pdb-trRefine
for m in 0 1 2
do
for p in 0.05 0.15 0.25 0.35 0.45
do
#for ((i=0;i<3;i++))
for ((i=0;i<1;i++))
do
echo "python -u $PIPEDIR/folding/RosettaTR.py -r 3 -pd $p -m $m -sg 7,3 -bb $WDIR/rep_s/BBtor.npz $WDIR/t000_.trRefine.npz $IN $WDIR/pdb-trRefine/model${i}_${m}_${p}.pdb"
done
done
done > $WDIR/trRefine_fold.list
echo "Folding trRefine models"
parallel -j $CPU < $WDIR/trRefine_fold.list > $WDIR/log/trRefine_fold.stdout 2> $WDIR/log/trRefine_fold.stderr
touch $WDIR/DONE_iter1
ls $WDIR/pdb-trRefine/model*.pdb > $WDIR/pdb-trRefine/pdb.list
fi
############################################################
# 9. Pick final models
############################################################
if [ ! -f $WDIR/pdb-trRefine/DONE_DAN ]
then
# run DeepAccNet-msa
echo "Running DeepAccNet-msa on trRefine models"
python $PIPEDIR/trRefine/DAN-msa/ErrorPredictorMSA.py \
-p $CPU \
$WDIR/t000_.trRefine.npz $WDIR/pdb-trRefine/pdb.list $WDIR/pdb-trRefine > $WDIR/log/dan-msa.stdout 2> $WDIR/log/dan-msa.stderr
touch $WDIR/pdb-trRefine/DONE_DAN
fi
if [ ! -s $WDIR/model/model_5.crderr.pdb ]
then
echo "Picking final models"
python -u -W ignore $PIPEDIR/trRefine/pick_final_models.div.py \
$WDIR/pdb-trRefine $WDIR/rep_s $WDIR/model $CPU > $WDIR/log/pick.stdout 2> $WDIR/log/pick.stderr
echo "Final models saved in: $2/model"
fi
echo "Done"