forked from iree-org/iree-turbine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompiled_module.py
782 lines (652 loc) · 25.5 KB
/
compiled_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
# Copyright 2023 Nod Labs, Inc
# Portions Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Union
import enum
import inspect
import logging
from pathlib import Path
import re
import weakref
import sys
from torch.export import ExportedProgram
from . import builtins
from ..support.ir_imports import (
Context,
Location,
MLIRError,
Module,
Operation,
PassManager,
StringAttr,
)
from ..support.logging import aot_logger as logger
from ..transforms.general.custom_op_expansion import ExpandCustomOpsPass
from .support.procedural import (
GlobalsDef,
ProcedureTrace,
current_ir_trace,
)
from .support.procedural.exported_program import import_exported_program
from .support.ir_utils import (
ModuleBuilder,
ModuleBuilderOptions,
)
from .tensor_traits import DeviceAffinity
__all__ = [
"CompiledModule",
]
################################################################################
# Data structures
################################################################################
class ImportPhase(enum.IntEnum):
# Imports to torch dialect IR.
TORCH_IR = 0
# Performs custom op expansion and post processing for known custom ops.
CUSTOM_OP_EXPANSION = 1
# Compiles to valid MLIR that IREE can ingest as an input with the
# input-type of torch.
IMPORT = CUSTOM_OP_EXPANSION
# Runs the IREE input pipeline to compile to internal form.
IREE_INTERNAL = 2
# The full import pipeline (this is an alias for another enum value).
FULL = IREE_INTERNAL
@staticmethod
def parse(spec: Union[str, None, "ImportPhase"]) -> "ImportPhase":
if spec is None:
return ImportPhase.IMPORT
if isinstance(spec, ImportPhase):
return spec
spec = spec.upper().replace("-", "_")
if spec not in ImportPhase.__members__:
raise ValueError(
f"For import_phase= argument, expected one of: "
f"{', '.join(ImportPhase.__members__.keys())}"
)
return ImportPhase[spec]
def __str__(self):
return self.name
class PyOnlyDef:
"""Exportable that does not export but can be resolved in Python."""
__slots__ = ["py_value"]
def __init__(self, py_value):
self.py_value = py_value
def __str__(self):
return str(self.py_value)
def __repr__(self):
return repr(self.py_value)
def __call__(self, *args, **kwargs):
return self.py_value(*args, **kwargs)
class ExportTargetDef:
def __init__(
self,
target: Union[Callable, ExportedProgram],
*,
arg_device: dict[int, DeviceAffinity] | None = None,
):
self.target = target
self.arg_device = arg_device
def __call__(self, *args, **kwargs):
return self.target(*args, **kwargs)
class ExportProcDef:
__slots__ = [
"callable",
"export_name",
"signature",
"file_line_loc",
"arg_device",
]
def __init__(
self,
export_name: str,
callable: Callable,
*,
signature,
file_line_loc: Optional[Tuple[str, int]] = None,
arg_device: dict[int, DeviceAffinity] | None = None,
):
self.export_name = export_name
self.callable = callable
self.signature = signature
self.file_line_loc = file_line_loc
self.arg_device = arg_device
def copy(self) -> "ExportProcDef":
return ExportProcDef(
self.export_name,
self.callable,
signature=self.signature,
file_line_loc=self.file_line_loc,
arg_device=self.arg_device,
)
def __repr__(self):
return f"<def {self.export_name}({self.signature})>"
class ExportedProgramDef:
def __init__(
self,
ep: ExportedProgram,
*,
export_name: Optional[str] = None,
public: bool = False,
arg_device: dict[int, DeviceAffinity] | None = None,
):
self.export_name = export_name
self.exported_program = ep
self.public = public
self.arg_device = arg_device
def copy(self) -> "ExportedProgramDef":
return ExportedProgramDef(
self.exported_program,
export_name=self.export_name,
public=self.public,
arg_device=self.arg_device,
)
def __repr__(self):
return f"<exported_program {self.exported_program}>"
Exportable = Union[ExportProcDef, ExportedProgramDef, PyOnlyDef, GlobalsDef]
class CompiledModuleClassInfo:
__slots__ = [
"all_exports",
"ir_module_name",
"options",
]
def __init__(self, *, ir_module_name: str, options: ModuleBuilderOptions):
self.ir_module_name = ir_module_name
self.all_exports: Dict[str, Exportable] = dict()
self.options = options
def add_export(self, key: str, value: Exportable):
if key in self.all_exports:
raise TypeError(f"Cannot export attribute more than once: {key}")
self.all_exports[key] = value
@property
def export_procs(self) -> Generator[Tuple[str, ExportProcDef], None, None]:
return filter(
lambda kv_tuple: isinstance(kv_tuple[1], ExportProcDef),
self.all_exports.items(),
) # type: ignore
@property
def exported_programs(
self,
) -> Generator[Tuple[str, ExportedProgramDef], None, None]:
return filter(
lambda kv_tuple: isinstance(kv_tuple[1], ExportedProgramDef),
self.all_exports.items(),
) # type: ignore
@property
def py_only_defs(self) -> Generator[Tuple[str, PyOnlyDef], None, None]:
return filter(
lambda kv_tuple: isinstance(kv_tuple[1], PyOnlyDef),
self.all_exports.items(),
) # type: ignore
@property
def globals_defs(self) -> Generator[Tuple[str, GlobalsDef], None, None]:
return filter(
lambda kv_tuple: isinstance(kv_tuple[1], GlobalsDef),
self.all_exports.items(),
) # type: ignore
def def_attribute(self, key, value):
if isinstance(value, ExportTargetDef):
if not isinstance(value.target, ExportedProgram):
# We expect exported function.
assert callable(value.target) and inspect.isfunction(value.target)
return self.def_export_proc(key, value.target, value.arg_device)
value = ExportedProgramDef(
value.target,
export_name=key,
public=not key.startswith("_"),
arg_device=value.arg_device,
)
# Some decorators, the only thing we do is convert them to PyOnlyDef.
# Do that first so the generic descriptor code below handles them.
if isinstance(value, builtins.jittable):
value = PyOnlyDef(value)
# Promote a torch ExportedProgram to an ExportedProgramDef.
if isinstance(value, ExportedProgram):
value = ExportedProgramDef(
value, export_name=key, public=not key.startswith("_")
)
# Detect our own descriptors.
if isinstance(value, GlobalsDef):
logging.debug("DEFINE GLOBALS: %s = %r", key, value)
self.add_export(key, value)
return value
if isinstance(value, ExportProcDef):
value = value.copy()
if value.export_name is None:
value.export_name = key
self.add_export(key, value)
return value
if isinstance(value, PyOnlyDef):
logging.debug("DEFINE PY_ONLY: %s = %r", key, value)
self.add_export(key, value)
return value
if isinstance(value, ExportTargetDef) and isinstance(
value.target, ExportedProgram
):
value = ExportedProgramDef(
value.target,
export_name=key,
public=not key.startswith("_"),
arg_device=value.arg_device,
)
if isinstance(value, ExportedProgramDef):
if value.export_name is None:
value = value.copy()
value.export_name = key
logging.debug("DEFINE EXPORTED_PROGRAM: %r", value.export_name)
self.add_export(key, value)
return value
# Infer if it is an exported function.
if callable(value) and inspect.isfunction(value):
return self.def_export_proc(key, value)
raise TypeError(
f"cannot set arbitrary Python value '{key}' on "
f"compiled module: {value!r}"
)
def def_export_proc(
self,
name,
f,
arg_device: dict[int, DeviceAffinity] | None = None,
) -> ExportProcDef:
logging.debug("DEFINE EXPORT: %s = %r", name, f)
# Get a reasonable location.
file_line_loc = None
try:
sourcefile = inspect.getsourcefile(f)
_, linenum = sourcelines = inspect.getsourcelines(f)
except OSError:
...
else:
file_line_loc = (sourcefile or "<unnamed>", linenum)
sig = inspect.signature(f)
if len(sig.parameters) < 1:
raise TypeError(
f"export proc '{name}' is expected to have a 'self' parameter"
)
# By default, we discover signature details from default values
# on the function. But we should also source from an annotation.
input_sig = []
parameter_list = list(sig.parameters.values())
# TODO: Reconstitute a pytree so as to handle kwargs?
# See: https://github.com/nod-ai/SHARK-ModelDev/issues/128
for param in parameter_list[1:]:
if (
param.kind != inspect.Parameter.POSITIONAL_ONLY
and param.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD
):
raise TypeError(
f"exported functions only support positional parameters"
)
param_desc = param.default
if param_desc is inspect.Parameter.empty:
# TODO: Merge from a decorator?
# See: https://github.com/nod-ai/SHARK-ModelDev/issues/126
raise TypeError(
f"export function {name} missing required default value annotation "
f"for '{param.name}'"
)
input_sig.append(param_desc)
info = ExportProcDef(
name,
f,
signature=input_sig,
file_line_loc=file_line_loc,
arg_device=arg_device,
)
self.add_export(name, info)
return info
class CompiledModuleInstanceInfo:
"""Info class for compiled module instances."""
__slots__ = [
"class_info",
"module_builder",
"shadow_dict",
"current_import_phase",
]
def __init__(
self, class_info: CompiledModuleClassInfo, module_builder: ModuleBuilder
):
self.class_info = class_info
self.module_builder = module_builder
# The shadow dict holds instance attributes. We stash them here and the
# Program instance itself arbitrates access via getattr/setattr.
self.shadow_dict: dict[str, Any] = dict()
self.current_import_phase = ImportPhase.TORCH_IR
################################################################################
# Live reference accounting
################################################################################
_all_compiled_module_class_infos: weakref.WeakKeyDictionary[
"CompiledModuleMeta", CompiledModuleClassInfo
] = weakref.WeakKeyDictionary()
_all_compiled_module_instance_infos: weakref.WeakKeyDictionary[
"CompiledModule", CompiledModuleInstanceInfo
] = weakref.WeakKeyDictionary()
################################################################################
# CompiledModule and metaclass
################################################################################
# Gate that is set to True once metaclass setup is complete.
_metaclass_setup_complete = False
@property # type: ignore
def _blackhole_instance_attribute(self):
# We're not here.
raise AttributeError
def _uncallable_public_export(*args, **kwargs):
raise RuntimeError(f"Calls to exported functions not yet supported")
_COMPILED_MODULE_API_ATTRIBUTES = [
"create_from_dict",
"expand_custom_ops",
"export_global",
"get_class_info",
"get_info",
"get_module_builder",
"get_mlir_module",
"jittable",
"run_import",
"run_pass_pipeline",
"save_mlir",
]
class CompiledModuleMeta(type):
"""Metaclass for all CompiledModule subclasses.
Do not use directly.
"""
# __new__ on a metaclass is called when a new subclass is constructed.
# It is passed the dictionary of declared attributes and any keyword
# arguments from the class declaration:
# class Foo(Bar, kwarg="you probably just learned this is possible"):
def __new__(
mcls,
name: str,
bases,
dct,
*,
export_name: Optional[str] = None,
options: Optional[ModuleBuilderOptions] = None,
):
if not _metaclass_setup_complete:
return type.__new__(mcls, name, bases, dct)
ir_module_name = _derive_ir_module_name(name, export_name)
logger.debug("Create new CompiledModule: %s", ir_module_name)
info = CompiledModuleClassInfo(
ir_module_name=ir_module_name, options=options or ModuleBuilderOptions()
)
# Process that attributes that were set as part of class definition.
# Any attributes that we decide are part of the compiled module
# are removed and appropriately transferred to the backing info
# hierarchy.
del_attr_keys = set()
for key, value in dct.items():
if key.startswith("__") and key.endswith("__"):
continue
del_attr_keys.add(key)
info.def_attribute(key, value)
for key in del_attr_keys:
del dct[key]
# The CompiledModule exports a number of its own API methods, which
# we explicitly hide on subclasses and instances.
for key in _COMPILED_MODULE_API_ATTRIBUTES:
if key not in dct:
dct[key] = _blackhole_instance_attribute
# Inheriting methods, globals, and export from parent class.
# Use case such as building a child-class to StatelessLlama.
for base in bases:
if base is CompiledModule:
continue
base_exports = _all_compiled_module_class_infos[base].all_exports
for export_name in base_exports:
if export_name in info.all_exports:
continue
info.all_exports[export_name] = base_exports[export_name]
# Finish construction.
new_class = type.__new__(mcls, name, bases, dct)
_all_compiled_module_class_infos[new_class] = info
return new_class
# Gets unresolved attributes on classes of this meta-class.
def __getattr__(cls, key):
# CompiledModule does not expose anything else.
if cls is CompiledModule:
raise AttributeError(f"CompiledModule.{key}")
info = CompiledModule.get_class_info(cls)
try:
return info.all_exports[key]
except KeyError:
raise AttributeError
class CompiledModule(metaclass=CompiledModuleMeta):
"""Base class for all staged modules."""
@classmethod
def create_from_dict(
cls: CompiledModuleMeta,
name: str,
dct: dict,
*,
export_name: Optional[str] = None,
options: Optional[ModuleBuilderOptions] = None,
) -> CompiledModuleMeta:
"""Creates a CompiledModule subclass with an explicit dictionary of members.
This is the unsugared form of:
```
class Foo(CompiledModule, export_name="bar"):
def member(): ...
```
"""
return CompiledModuleMeta(
name, (cls,), dct, export_name=export_name, options=options
)
@staticmethod
def get_class_info(cls: CompiledModuleMeta) -> CompiledModuleClassInfo:
return _all_compiled_module_class_infos[cls]
@staticmethod
def get_info(inst: "CompiledModule") -> CompiledModuleInstanceInfo:
return _all_compiled_module_instance_infos[inst]
@staticmethod
def get_module_builder(inst: "CompiledModule") -> Operation:
if not isinstance(inst, CompiledModule):
raise ValueError(
f"Expected a CompiledModule instance but got: {inst.__class__}"
)
info = CompiledModule.get_info(inst)
return info.module_builder
@staticmethod
def get_mlir_module(inst: "CompiledModule") -> Operation:
return CompiledModule.get_module_builder(inst).module_op
@staticmethod
def run_import(
inst: "CompiledModule", import_to: Union[ImportPhase, str, None] = "import"
):
import_to = ImportPhase.parse(import_to)
info = CompiledModule.get_info(inst)
for phase in [
ImportPhase.TORCH_IR,
ImportPhase.CUSTOM_OP_EXPANSION,
ImportPhase.IREE_INTERNAL,
]:
if phase > import_to:
logger.debug("Stopped import at phase %s", info.current_import_phase)
break
if info.current_import_phase >= phase:
continue
logger.debug("Run import phase %s", phase)
if phase == ImportPhase.TORCH_IR:
# Starting phase. Do nothing.
...
elif phase == ImportPhase.CUSTOM_OP_EXPANSION:
CompiledModule.expand_custom_ops(inst)
elif phase == ImportPhase.IREE_INTERNAL:
CompiledModule.run_pass_pipeline(inst, "builtin.module(torch-to-iree)")
else:
assert False, f"Phase {phase} not handled in switch"
info.current_import_phase = phase
@staticmethod
def expand_custom_ops(inst: "CompiledModule"):
"""Performs custom torch.operator expansion for known custom ops."""
logger.debug("Expand known torch.operator custom ops")
module_op = CompiledModule.get_mlir_module(inst)
p = ExpandCustomOpsPass(module_op)
p.run()
@staticmethod
def run_pass_pipeline(
inst: "CompiledModule", pipeline: str, enable_ir_printing: bool = False
):
"""Runs an arbitrary pass pipeline against the current IR.
Args:
pipeline: The text format pass pipeline as supported by PassManager.parse.
enable_ir_printing: Enables print-after-all to stderr.
"""
logger.debug("Run pass pipeline: %s", pipeline)
module_op = CompiledModule.get_mlir_module(inst)
with module_op.context:
pm = PassManager.parse(pipeline)
if enable_ir_printing:
module_op.context.enable_multithreading(False)
pm.enable_ir_printing()
try:
pm.run(module_op)
except MLIRError:
# TODO: Better error handling.
# See: https://github.com/nod-ai/SHARK-ModelDev/issues/127
print(module_op, file=sys.stderr)
raise
@staticmethod
def save_mlir(inst: "CompiledModule", path: Union[Path, str]):
"""Saves a snapshot of the MLIR module in this CompiledModule to a file.
This is a convenience wrapper around the facilities of the underlying
API and does not expose all features.
Args:
path: The file path to write to. If the extension is ".mlirbc", it
will be written as bytecode.
"""
path = Path(path)
bytecode = path.suffix == ".mlirbc"
module_op = CompiledModule.get_mlir_module(inst)
with open(path, "wb") as f:
if bytecode:
module_op.write_bytecode(f)
else:
module_op.print(f, binary=True)
jittable = staticmethod(builtins.jittable)
@staticmethod
def signature_info(
*,
arg_device: dict[int, DeviceAffinity] | None = None,
) -> Callable:
"""Annotate an export target function.
This annotation is only required when additional information needs to be
provided."""
def _decorator(f: Callable):
return ExportTargetDef(f, arg_device=arg_device)
return _decorator
def __getattr__(self, name):
info = CompiledModule.get_info(self)
try:
return info.shadow_dict[name]
except KeyError:
raise AttributeError(f"Attribute {name} not defined")
def __setattr__(self, name, value):
info = CompiledModule.get_info(self)
try:
descriptor = info.shadow_dict[name]
except KeyError:
raise AttributeError(f"Attribute {name} cannot be set")
current_ir_trace().handle_assignment(self, descriptor, value)
def __new__(
cls,
*,
context: Optional[Context] = None,
module_op: Optional[Operation] = None,
import_to: Union[ImportPhase, None, str] = "import",
):
import_to = ImportPhase.parse(import_to)
self = super().__new__(cls)
class_info = CompiledModule.get_class_info(cls)
if context and module_op:
raise ValueError("Only one of context= or module_op= can be specified")
if not context and not module_op:
try:
context = Context.current
except ValueError:
pass
if not context:
context = Context()
if not module_op:
with context:
loc = Location.unknown(context=context)
module = Module.create(loc)
module_op = module.operation
module_op.attributes["sym_name"] = StringAttr.get(
class_info.ir_module_name, context=context
)
module_builder = ModuleBuilder(module_op, options=class_info.options)
info = CompiledModuleInstanceInfo(class_info, module_builder=module_builder)
_all_compiled_module_instance_infos[self] = info
# Instantiate globals
for key, globals_def in info.class_info.globals_defs:
info.shadow_dict[key] = globals_def.track(module_builder, key)
# Make PyOnly defs visible.
for key, py_def in info.class_info.py_only_defs:
info.shadow_dict[key] = py_def.py_value
# Instantiate exported programs.
# TODO: This should be done in two phases along with export_procs
# in order to enable dependence.
for key, ep_def in info.class_info.exported_programs:
info.shadow_dict[key] = import_exported_program(
module_builder,
ep_def.exported_program,
symbol_name=ep_def.export_name or "main",
symbol_visibility=None if ep_def.public else "private",
arg_device=ep_def.arg_device,
)
# Instantiate procs.
# TODO: This should be done in two phases, first binding the symbols
# and then defining them, enabling dependence.
# See: https://github.com/nod-ai/SHARK-ModelDev/issues/129
for key, proc_def in info.class_info.export_procs:
def do_export(proc_def: ExportProcDef):
def invoke_with_self(*args, **kwargs):
return proc_def.callable(self, *args, **kwargs)
logger.debug("Generating procedural function: %s", key)
if proc_def.file_line_loc:
loc = Location.file(
proc_def.file_line_loc[0],
proc_def.file_line_loc[1],
col=0,
context=module_builder.context,
)
else:
loc = Location.unknown(context=module_builder.context)
trace = ProcedureTrace.define_func(
module_builder,
symbol_name=proc_def.export_name,
posargs=proc_def.signature,
kwargs={}, # TODO(#128): kwargs
loc=loc,
arg_device=proc_def.arg_device,
)
trace.trace_py_func(invoke_with_self)
info.shadow_dict[key] = _uncallable_public_export
do_export(proc_def)
module_builder.finalize_construct()
CompiledModule.run_import(self, import_to)
return self
_metaclass_setup_complete = True
################################################################################
# Utilities
################################################################################
def _derive_ir_module_name(class_name: str, explicit_name: Optional[str]):
"""Returns an appropriate module export name given a class name and override.
If an explicit_name is given, that is used as is. Otherwise, the class name
is mangled by:
* Removing and "Module" suffix.
* Converting camel case to snake case.
"""
if explicit_name:
return explicit_name
return _to_snake_case(_strip_suffix(class_name, "Module"))
def _to_snake_case(s: str) -> str:
return re.sub(r"(?<!^)(?=[A-Z])", "_", s).lower()
def _strip_suffix(s: str, optional_suffix: str) -> str:
if s.endswith(optional_suffix):
return s[0 : len(s) - len(optional_suffix)]
else:
return s