-
Notifications
You must be signed in to change notification settings - Fork 253
/
layer_utils.py
137 lines (121 loc) · 5.1 KB
/
layer_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os, math
import caffe
from caffe import layers as L
from caffe import params as P
from caffe.proto import caffe_pb2
from google.protobuf import text_format
def res_block(net, from_layer, num_filter, block_id, bottleneck_fact=0.5, stride=2, pad=1, use_bn=True):
branch1 = '{}'.format(block_id)
ConvBNLayer(net, from_layer, branch1, use_bn=use_bn, use_relu=False, num_output=num_filter, kernel_size=1, pad=0, stride=stride)
branch2a = '{}/b2a'.format(block_id)
ConvBNLayer(net, from_layer, branch2a, use_bn=use_bn, use_relu=True, num_output=int(num_filter*bottleneck_fact), kernel_size=1, pad=0, stride=1)
branch2b = '{}/b2b'.format(block_id)
ConvBNLayer(net, branch2a, branch2b, use_bn=use_bn, use_relu=True, num_output=int(num_filter*bottleneck_fact), kernel_size=3, pad=pad, stride=stride)
branch2c = '{}/b2c'.format(block_id)
ConvBNLayer(net, branch2b, branch2c, use_bn=use_bn, use_relu=False, num_output=num_filter, kernel_size=1, pad=0, stride=1)
res_name = '{}/res'.format(block_id)
net[res_name] = L.Eltwise(net[branch1], net[branch2c])
relu_name = '{}/relu'.format(res_name)
net[relu_name] = L.ReLU(net[res_name], in_place=True)
return relu_name
def ConvBNLayer(net, from_layer, out_layer, use_bn, use_relu, num_output,
kernel_size, pad, stride, dilation=1, use_scale=True, lr_mult=1,
conv_prefix='', conv_postfix='', bn_prefix='', bn_postfix='/bn',
scale_prefix='', scale_postfix='/scale', bias_prefix='', bias_postfix='/bias',
**bn_params):
if use_bn:
# parameters for convolution layer with batchnorm. weight_filler=dict(type='xavier'), bias_filler=dict(type='constant')
kwargs = {
'param': [dict(lr_mult=lr_mult, decay_mult=1)],
'weight_filler': dict(type='xavier'),
'bias_term': False,
}
eps = bn_params.get('eps', 0.001)
moving_average_fraction = bn_params.get('moving_average_fraction', 0.999)
#moving_average_fraction = bn_params.get('moving_average_fraction', 0.1)
use_global_stats = bn_params.get('use_global_stats', False)
# parameters for batchnorm layer.
bn_kwargs = {
'param': [
dict(lr_mult=0, decay_mult=0),
dict(lr_mult=0, decay_mult=0),
dict(lr_mult=0, decay_mult=0)],
'eps': eps,
'moving_average_fraction': moving_average_fraction,
}
bn_lr_mult = lr_mult
if use_global_stats:
# only specify if use_global_stats is explicitly provided;
# otherwise, use_global_stats_ = this->phase_ == TEST;
bn_kwargs = {
'param': [
dict(lr_mult=0, decay_mult=0),
dict(lr_mult=0, decay_mult=0),
dict(lr_mult=0, decay_mult=0)],
'eps': eps,
'use_global_stats': use_global_stats,
}
# not updating scale/bias parameters
bn_lr_mult = 0
# parameters for scale bias layer after batchnorm.
if use_scale:
sb_kwargs = {
'bias_term': True,
'param': [
dict(lr_mult=bn_lr_mult, decay_mult=0),
dict(lr_mult=bn_lr_mult, decay_mult=0)],
'filler': dict(type='constant', value=1.0),
'bias_filler': dict(type='constant', value=0.0),
}
else:
bias_kwargs = {
'param': [dict(lr_mult=bn_lr_mult, decay_mult=0)],
'filler': dict(type='constant', value=0.0),
}
else:
kwargs = {
'param': [
dict(lr_mult=lr_mult, decay_mult=1),
dict(lr_mult=2 * lr_mult, decay_mult=0)],
'weight_filler': dict(type='xavier'),
'bias_filler': dict(type='constant', value=0)
}
conv_name = '{}{}{}'.format(conv_prefix, out_layer, conv_postfix)
[kernel_h, kernel_w] = UnpackVariable(kernel_size, 2)
[pad_h, pad_w] = UnpackVariable(pad, 2)
[stride_h, stride_w] = UnpackVariable(stride, 2)
if kernel_h == kernel_w:
net[conv_name] = L.Convolution(net[from_layer], num_output=num_output,
kernel_size=kernel_h, pad=pad_h, stride=stride_h, **kwargs)
else:
net[conv_name] = L.Convolution(net[from_layer], num_output=num_output,
kernel_h=kernel_h, kernel_w=kernel_w, pad_h=pad_h, pad_w=pad_w,
stride_h=stride_h, stride_w=stride_w, **kwargs)
if dilation > 1:
net.update(conv_name, {'dilation': dilation})
if use_bn:
bn_name = '{}{}{}'.format(bn_prefix, out_layer, bn_postfix)
net[bn_name] = L.BatchNorm(net[conv_name], in_place=True, **bn_kwargs)
if use_scale:
sb_name = '{}{}{}'.format(scale_prefix, out_layer, scale_postfix)
net[sb_name] = L.Scale(net[bn_name], in_place=True, **sb_kwargs)
else:
bias_name = '{}{}{}'.format(bias_prefix, out_layer, bias_postfix)
net[bias_name] = L.Bias(net[bn_name], in_place=True, **bias_kwargs)
if use_relu:
relu_name = '{}/relu'.format(conv_name)
net[relu_name] = L.ReLU(net[conv_name], in_place=True)
def UnpackVariable(var, num):
assert len > 0
if type(var) is list and len(var) == num:
return var
else:
ret = []
if type(var) is list:
assert len(var) == 1
for i in xrange(0, num):
ret.append(var[0])
else:
for i in xrange(0, num):
ret.append(var)
return ret