-
Notifications
You must be signed in to change notification settings - Fork 6
/
hparameters.py
564 lines (441 loc) · 25.1 KB
/
hparameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import numpy as np
import math
import tensorflow as tf
from operator import itemgetter
import pandas as pd
from datetime import datetime
import pickle
from functools import reduce
class HParams():
"""Inheritable class for the parameter classes
Example of how to use
hparams = Hparams(**kwargs)
params_dict = hparams() #dictionary containing parameters
"""
def __init__( self ,**kwargs ):
self._default_params(**kwargs)
if( kwargs != None):
self.params.update( kwargs)
def __call__(self):
return self.params
def _default_params(self,**kwargs):
self.params = {}
class MParams(HParams):
"""Class to be inherited by parameter classes which are designed to return
parameters for models
"""
def __init__(self,**kwargs):
# Parameters related the extraction of the 2D patches of data
self.regiongrid_param_adjustment(**kwargs)
super(MParams,self).__init__(**kwargs)
def regiongrid_param_adjustment(self, **kwargs):
"""Creates a 'region_grid_params' dictionary containing
information on the sizes and location of patches to be extracted
"""
if not hasattr(self, 'params'):
self.params = {}
self.params.update(
{'region_grid_params':{
'outer_box_dims':[16,16],
'inner_box_dims':[4,4],
'vertical_shift':4,
'horizontal_shift':4,
'input_image_shape':[100,140]}
}
)
vertical_slides = (self.params['region_grid_params']['input_image_shape'][0] - self.params['region_grid_params']['outer_box_dims'][0] +1 )// self.params['region_grid_params']['vertical_shift']
horizontal_slides = (self.params['region_grid_params']['input_image_shape'][1] - self.params['region_grid_params']['outer_box_dims'][1] +1 ) // self.params['region_grid_params']['horizontal_shift']
self.params['region_grid_params'].update({'slides_v_h':[vertical_slides, horizontal_slides]})
class model_TRUNET_hparameters(MParams):
"""Parameters Class for the TRUNET Encoder-Decoder model
"""
def __init__(self, **kwargs):
self.conv_ops_qk = kwargs['model_type_settings'].get('conv_ops_qk',False)
kwargs['model_type_settings'].pop('conv_ops_qk',None)
super( model_TRUNET_hparameters, self ).__init__(**kwargs)
def _default_params( self, **kwargs ):
model_type_settings = kwargs.get('model_type_settings', {})
# region --- learning / convergence / regularlisation params
REC_ADAM_PARAMS = {
"learning_rate":model_type_settings.get('lr_max',5e-4), "warmup_proportion":0.65,
"min_lr":model_type_settings.get('lr_min',5e-5), "beta_1":model_type_settings.get('b1',0.9), "beta_2":model_type_settings.get('b2',0.99),
"amsgrad":True, "decay":0.0008, "epsilon":5e-8 } #Rectified Adam params
clip_norm = model_type_settings.get('clip_norm',5.5)
DROPOUT = model_type_settings.get('do',0.35)
ido = model_type_settings.get('ido',0.15) #model_type_settings.get('ido',0.35) # Dropout for input into GRU
rdo = model_type_settings.get('rdo',0.35) # Dropout for recurrent input into GRU
kernel_reg = None #regularlization for input to GRU
recurrent_reg = None #regularlization for recurrent input to GRU
bias_reg = tf.keras.regularizers.l2(0.0)
bias_reg_attn = tf.keras.regularizers.l2(0.0000)
kernel_reg_attn = tf.keras.regularizers.l2(0.0000)
# endregion
# region --- Key Model Size Settings
seq_len_for_highest_hierachy_level = 4 # Seq length of GRU operations in highest level of encoder
seq_len_factor_reduction = [4, 7] # This represents the reduction in seq_len when going from layer 1
#to layer 2 and layer 2 to layer 3 in the encoder / decoder
# 6hrs, 1Day, 1Week
# endregion
# region --- Model Specific Data Generating Params
target_to_feature_time_ratio = seq_len_factor_reduction[0]
lookback_feature = reduce( (lambda x,y: x*y ), seq_len_factor_reduction ) * seq_len_for_highest_hierachy_level #Temporal length of input elements
DATA_PIPELINE_PARAMS = {
'lookback_feature':lookback_feature,
'lookback_target': int(lookback_feature/target_to_feature_time_ratio) #Temporal length of output elements
}
# endregion
# region --- ENCODER params
enc_layer_count = len( seq_len_factor_reduction ) + 1
attn_layers_count = enc_layer_count - 1
# ConvGRU params
filters = 64 #72 # no. of filters in all conv operations in ConvGRU units
kernel_size_enc = [ (4,4) ] * ( enc_layer_count )
print("Check appropriate stateful is being used for multi gpu status")
stateful = False
# Attention params
attn_heads = [ model_type_settings.get('heads', 8) ]*attn_layers_count
#NOTE:Must be a factor of h or w or c. h,w are dependent on model type so make it a multiple of c = 8
kq_downscale_stride = [1, 4, 4]
kq_downscale_kernelshape = kq_downscale_stride
key_depth = [filters]*attn_layers_count # Key vector size
val_depth = [ int( np.prod( self.params['region_grid_params']['outer_box_dims'] ) * filters * 2 )] *attn_layers_count
attn_layers_num_of_splits = list(reversed((np.cumprod( list( reversed(seq_len_factor_reduction[1:] + [1] ) ) ) *seq_len_for_highest_hierachy_level ).tolist()))
# attn_layers_num_of_splits is how many chunks the incoming tensors are split into
attn_params_enc = [
{'bias':None, 'total_key_depth': kd ,'total_value_depth':vd, 'output_depth': vd ,
'num_heads': nh , 'dropout_rate':DROPOUT, 'value_dropout':model_type_settings.get('value_dropout',True),
'max_relative_position':None, "transform_value_antecedent":True, "transform_output":True,
'implementation':1, 'conv_ops_qk':self.conv_ops_qk,
"value_conv":{ "filters":int(filters * 2), 'kernel_size':[3,3] ,'use_bias':True, "activation":'relu', 'name':"v", 'bias_regularizer':bias_reg_attn, 'kernel_regularizer':kernel_reg_attn ,'padding':'same' },
"output_conv":{ "filters":int(filters * 2), 'kernel_size':[3,3] ,'use_bias':True, "activation":'relu', 'name':"outp", 'bias_regularizer':bias_reg_attn, 'kernel_regularizer':kernel_reg_attn, 'padding':'same' }
}
for kd, vd ,nh, idx in zip( key_depth, val_depth, attn_heads,range(attn_layers_count) )
] #list of param dictionaries for each Inter Layer Cross Attention unit in the encoder
#Note: bias refers to any attention masking, use_bias refers to bias used in convolutional ops
attn_downscaling_params_enc = {
'kq_downscale_stride': kq_downscale_stride,
'kq_downscale_kernelshape':kq_downscale_kernelshape
} #List of params for 3D average pooling operations
CGRUs_params_enc = [
{'filters':filters , 'kernel_size':ks, 'padding':'same',
'return_sequences':True, 'dropout':ido, 'recurrent_dropout':rdo,
'stateful':stateful, 'recurrent_regularizer': recurrent_reg, 'kernel_regularizer':kernel_reg,
'bias_regularizer':bias_reg, 'implementation':1 ,'layer_norm':None }
for ks in kernel_size_enc
] #list of params for each ConvGRU layer in the Encoder
ENCODER_PARAMS = {
'enc_layer_count': enc_layer_count,
'attn_layers_count': attn_layers_count,
'CGRUs_params' : CGRUs_params_enc,
'ATTN_params': attn_params_enc,
'ATTN_DOWNSCALING_params_enc':attn_downscaling_params_enc,
'seq_len_factor_reduction': seq_len_factor_reduction,
'attn_layers_num_of_splits': attn_layers_num_of_splits,
'dropout':DROPOUT
}
#endregion
# region --- DECODER params
decoder_layer_count = enc_layer_count-2
kernel_size_dec = kernel_size_enc[ 1:1+decoder_layer_count ]
# Each decoder layer sends in values into the layer below.
CGRUs_params_dec = [
{'filters':filters , 'kernel_size':ks, 'padding':'same',
'return_sequences':True, 'dropout':ido,
'recurrent_dropout':rdo,
'kernel_regularizer':kernel_reg,
'recurrent_regularizer': recurrent_reg,
'bias_regularizer':bias_reg,
'stateful':stateful,
'implementation':1 ,'layer_norm':[ None, None ] }
for ks in kernel_size_dec ] #list of dictionaries containing params for each ConvGRU layer in decoder
decoder_layers_num_of_splits = attn_layers_num_of_splits[:decoder_layer_count]
#Each output from a decoder layer is split into n chunks the fed to n different nodes in the layer below. param above tracks teh value n for each dec layer
seq_len_factor_expansion = seq_len_factor_reduction[-decoder_layer_count:]
DECODER_PARAMS = {
'decoder_layer_count': decoder_layer_count,
'CGRUs_params' : CGRUs_params_dec,
'seq_len_factor_expansion': seq_len_factor_expansion, #This is written in the correct order
'seq_len': decoder_layers_num_of_splits,
'attn_layer_no_splits':attn_layers_num_of_splits,
'dropout':DROPOUT
}
# endregion
# region --- OUTPUT_LAYER_PARAMS and Upscaling
output_filters = [ int( 8*(((filters*2)/4)//8)), 1 ]
output_kernel_size = [ (3,3), (3,3) ]
activations = ['relu','linear']
OUTPUT_LAYER_PARAMS = [
{ "filters":fs, "kernel_size":ks , "padding":"same", "activation":act }
for fs, ks, act in zip( output_filters, output_kernel_size, activations )
]
# endregion
self.params.update( {
'model_name':"TRUNET",
'model_type_settings':model_type_settings,
'htuning':model_type_settings.get('htuning',False),
'htune_version':model_type_settings.get('htune_version',0),
'encoder_params':ENCODER_PARAMS,
'decoder_params':DECODER_PARAMS,
'output_layer_params':OUTPUT_LAYER_PARAMS,
'data_pipeline_params':DATA_PIPELINE_PARAMS,
'rec_adam_params':REC_ADAM_PARAMS,
'dropout':DROPOUT,
'clip_norm':clip_norm ,
"time_sequential": True
} )
class model_HCGRU_hparamaters(MParams):
def __init__(self, **kwargs):
super(model_HCGRU_hparamaters, self).__init__(**kwargs)
def _default_params(self,**kwargs):
model_type_settings = kwargs.get('model_type_settings', {})
dropout = model_type_settings.get('do',0.2)
#region --- ConvLayers
layer_count = 4
filters = 80
print("Check appropriate stateful is being used for multi gpu status")
stateful = False
kernel_sizes = [[4,4]]*layer_count
paddings = ['same']*layer_count
return_sequences = [True]*layer_count
input_dropout = [model_type_settings.get('ido',0.1) ]*layer_count #[0.0]*layer_count
recurrent_dropout = [ model_type_settings.get('rdo',0.35)]*layer_count #[0.0]*layer_count
ConvGRU_layer_params = [ { 'filters':filters, 'kernel_size':ks , 'padding': ps,
'return_sequences':rs, "dropout": dp , "recurrent_dropout":rdp,
'kernel_regularizer': None,
'recurrent_regularizer': None,
'bias_regularizer':tf.keras.regularizers.l2(0.0),
'layer_norm': None,
'implementation':1, 'stateful':stateful }
for ks,ps,rs,dp,rdp in zip( kernel_sizes, paddings, return_sequences, input_dropout, recurrent_dropout) ]
conv1_layer_params = {'filters': int( 8*(((filters*2)/3)//8)) , 'kernel_size':[3,3], 'activation':'relu','padding':'same','bias_regularizer':tf.keras.regularizers.l2(0.0) }
outpconv_layer_params = {'filters':1, 'kernel_size':[3,3], 'activation':'linear','padding':'same','bias_regularizer':tf.keras.regularizers.l2(0.0) }
#endregion
#region --- Data pipeline and optimizers
target_to_feature_time_ratio = 4
lookback_feature = 28*target_to_feature_time_ratio
DATA_PIPELINE_PARAMS = {
'lookback_feature':lookback_feature,
'lookback_target': int(lookback_feature/target_to_feature_time_ratio),
'target_to_feature_time_ratio' : target_to_feature_time_ratio
}
REC_ADAM_PARAMS = {
"learning_rate":model_type_settings.get('lr_max',1e-3),
"warmup_proportion":0.65,
"min_lr":model_type_settings.get('lr_min',1e-4),
"beta_1":model_type_settings.get('b1',0.75),
"beta_2":model_type_settings.get( 'b2',0.99),
"amsgrad":True,
"decay":0.0008,
"epsilon":5e-8 } #Rectified Adam params
LOOKAHEAD_PARAMS = { "sync_period":1 , "slow_step_size":0.99 }
# endregion
model_type_settings = kwargs.get('model_type_settings',{})
self.params.update( {
'model_name':'HCGRU',
'layer_count':layer_count,
'ConvGRU_layer_params':ConvGRU_layer_params,
'conv1_layer_params':conv1_layer_params,
'outpconv_layer_params': outpconv_layer_params,
'dropout': dropout,
'data_pipeline_params':DATA_PIPELINE_PARAMS,
'model_type_settings':model_type_settings,
'htuning':model_type_settings.get('htuning',False),
'htune_version':model_type_settings.get('htune_version',0),
'rec_adam_params':REC_ADAM_PARAMS,
'lookahead_params':LOOKAHEAD_PARAMS,
'clip_norm':model_type_settings.get('clip_norm',5.5),
"time_sequential": True
})
class model_UNET_hparamaters(MParams):
def __init__(self, **kwargs):
super(model_UNET_hparamaters, self).__init__(**kwargs)
def _default_params(self,**kwargs):
model_type_settings = kwargs.get( 'model_type_settings', {} )
dropout = model_type_settings.get('do',0.01)
REC_ADAM_PARAMS = {
"learning_rate":model_type_settings.get('lr_max',1e-4),
"warmup_proportion":0.65,
"min_lr":model_type_settings.get('lr_min',1e-5),
"amsgrad":True,
"decay":0.0008,
"epsilon":1e-5 } #Rectified Adam params
LOOKAHEAD_PARAMS = { "sync_period":1 , "slow_step_size":0.99 }
model_type_settings = kwargs.get( 'model_type_settings', {} )
self.params.update( {
'model_name':'UNET',
'dropout': dropout,
'model_type_settings':model_type_settings,
'rec_adam_params':REC_ADAM_PARAMS,
'lookahead_params':LOOKAHEAD_PARAMS,
'clip_norm':model_type_settings.get('clip_norm',5.0 ),
"time_sequential": False
})
class train_hparameters_ati(HParams):
""" Parameters for testing """
def __init__(self, **kwargs):
self.lookback_target = kwargs.pop('lookback_target',1)
self.batch_size = kwargs.pop('batch_size')
self.dd = kwargs.get("data_dir",'./Data/Rain_Data_Mar20')
self.objective = kwargs.get("objective","mse")
self.parallel_calls = kwargs.get("parallel_calls",-1)
self.epochs = kwargs.get("epochs",100)
# data formulation method
self.custom_train_split_method = kwargs.get('ctsm')
if self.custom_train_split_method == "4ds_10years":
self.four_year_idx_train = kwargs['fyi_train'] #index for training set
super( train_hparameters_ati, self).__init__(**kwargs)
def _default_params(self, **kwargs):
# region ------- Masking, Standardisation, temporal_data_size
trainable = True
MASK_FILL_VALUE = {
"rain":0.0,
"model_field":0.0
}
vars_for_feature = ['unknown_local_param_137_128', 'unknown_local_param_133_128', 'air_temperature', 'geopotential', 'x_wind', 'y_wind' ]
NORMALIZATION_SCALES = {
"rain":4.69872+0.5,
"model_fields": np.array([6.805,
0.001786,
5.458,
1678.2178,
5.107268,
4.764533]) }
NORMALIZATION_SHIFT = {
"rain":2.844,
"model_fields": np.array([15.442,
0.003758,
274.833,
54309.66,
3.08158,
0.54810])
}
WINDOW_SHIFT = self.lookback_target
BATCH_SIZE = self.batch_size
# endregion
EPOCHS = self.epochs
CHECKPOINTS_TO_KEEP = 1
# region ---- data formulation strategies
target_start_date = np.datetime64('1950-01-01') + np.timedelta64(10592,'D')
feature_start_date = np.datetime64('1970-01-01') + np.timedelta64(78888, 'h')
# a string containing four dates seperated by underscores
# The numbers correspond to trainstart_trainend_valstart_valend
dates_str = self.custom_train_split_method.split("_")
start_date = np.datetime64(dates_str[0],'D')
train_end_date = (pd.Timestamp(dates_str[1]) - pd.DateOffset(seconds=1) ).to_numpy()
val_start_date = np.datetime64(dates_str[1],'D')
val_end_date = (pd.Timestamp(dates_str[2]) - pd.DateOffset(seconds=1) ).to_numpy()
TRAIN_SET_SIZE_ELEMENTS = ( np.timedelta64(train_end_date - start_date,'D')).astype(int) // WINDOW_SHIFT
VAL_SET_SIZE_ELEMENTS = ( np.timedelta64(val_end_date - val_start_date,'D') // WINDOW_SHIFT ).astype(int)
# endregion
DATA_DIR = self.dd
EARLY_STOPPING_PERIOD = 25
self.params = {
'batch_size':BATCH_SIZE,
'epochs':EPOCHS,
'early_stopping_period':EARLY_STOPPING_PERIOD,
'trainable':trainable,
'lookback_target':self.lookback_target,
'train_batches': TRAIN_SET_SIZE_ELEMENTS//BATCH_SIZE,
#Note TRAIN_SET_SIZE_ELEMENTS refers to the number of sequences of days that are passed to TRU_NET as oppose dot every single day
'val_batches': VAL_SET_SIZE_ELEMENTS//BATCH_SIZE,
'checkpoints_to_keep':CHECKPOINTS_TO_KEEP,
'reporting_freq':0.25,
'train_monte_carlo_samples':1,
'data_dir': DATA_DIR,
'mask_fill_value':MASK_FILL_VALUE,
'vars_for_feature':vars_for_feature,
'normalization_scales' : NORMALIZATION_SCALES,
'normalization_shift': NORMALIZATION_SHIFT,
'window_shift': WINDOW_SHIFT,
'start_date':start_date,
'val_start_date':val_start_date,
'val_end_date':val_end_date,
'feature_start_date':feature_start_date,
'target_start_date':target_start_date,
'objective':self.objective,
'parallel_calls':self.parallel_calls
}
class test_hparameters_ati(HParams):
""" Parameters for testing """
def __init__(self, **kwargs):
self.lookback_target = kwargs['lookback_target']
self.batch_size = kwargs.get("batch_size", 2)
self.parallel_calls = kwargs.get('parallel_calls', -1)
self.dd = kwargs.get('data_dir')
self.custom_test_split_method = kwargs.get('ctsm_test')
if self.custom_test_split_method == "4ds_10years":
self.four_year_idx_train = kwargs['fyi_train'] #index for training set
self.four_year_idx_test = kwargs['fyi_test']
assert self.four_year_idx_train != self.four_year_idx_test
super( test_hparameters_ati, self).__init__(**kwargs)
def _default_params(self, **kwargs):
# region --- data pipepline vars
trainable = False
# Standardisation and masking variables
MASK_FILL_VALUE = {
"rain":0.0,
"model_field":0.0
}
vars_for_feature = ['unknown_local_param_137_128', 'unknown_local_param_133_128', 'air_temperature', 'geopotential', 'x_wind', 'y_wind' ]
NORMALIZATION_SCALES = {
"rain":4.69872+0.5,
"model_fields": np.array([6.805,
0.001786,
5.458,
1678.2178,
5.107268,
4.764533])
#- unknown_local_param_137_128
# - unknown_local_param_133_128,
# # - air_temperature,
# # - geopotential
# - x_wind,
# # - y_wind
}
NORMALIZATION_SHIFT = {
"rain":2.844,
"model_fields": np.array([15.442,
0.003758,
274.833,
54309.66,
3.08158,
0.54810])
}
WINDOW_SHIFT = self.lookback_target # temporal shift for window to evaluate
BATCH_SIZE = self.batch_size
# endregion
# region ---- Data Formaulation
target_start_date = np.datetime64('1950-01-01') + np.timedelta64(10592,'D') #E-obs recording start from 1950
feature_start_date = np.datetime64('1970-01-01') + np.timedelta64(78888, 'h') #ERA5 recording start from 1979
tar_end_date = target_start_date + np.timedelta64( 14822, 'D')
feature_end_date = np.datetime64( feature_start_date + np.timedelta64(59900, '6h'), 'D')
start_date = feature_start_date if (feature_start_date > target_start_date) else target_start_date
end_date = tar_end_date if (tar_end_date < feature_end_date) else feature_end_date
# User must pass in two dates seperated by underscore such as
dates_str = self.custom_test_split_method.split("_")
start_date = np.datetime64(dates_str[0],'D')
test_end_date = (pd.Timestamp(dates_str[1]) - pd.DateOffset(seconds=1) ).to_numpy()
TEST_SET_SIZE_DAYS_TARGET = np.timedelta64( test_end_date - start_date, 'D' ).astype(int)
# endregion
# timesteps for saving predictions
date_tss = pd.date_range( end=test_end_date, start=start_date, freq='D', normalize=True)
timestamps = list ( (date_tss - pd.Timestamp("1970-01-01") ) // pd.Timedelta('1s') )
DATA_DIR = self.dd
self.params = {
'batch_size':BATCH_SIZE,
'trainable':trainable,
'test_batches': TEST_SET_SIZE_DAYS_TARGET//(WINDOW_SHIFT*BATCH_SIZE),
'script_dir':None,
'data_dir':DATA_DIR,
'timestamps':timestamps,
'mask_fill_value':MASK_FILL_VALUE,
'vars_for_feature':vars_for_feature,
'normalization_scales' : NORMALIZATION_SCALES,
'normalization_shift': NORMALIZATION_SHIFT,
'window_shift': WINDOW_SHIFT,
'start_date':start_date,
'test_end_date':test_end_date,
'feature_start_date':feature_start_date,
'target_start_date':target_start_date,
'parallel_calls':self.parallel_calls
}