diff --git a/README.md b/README.md index 671b6172d..eed2c0852 100644 --- a/README.md +++ b/README.md @@ -160,40 +160,41 @@ result = infer(  -# Where to go next? - -There are a set of [examples](https://reactivebayes.github.io/RxInfer.jl/stable/examples/overview/) available in `RxInfer` repository that demonstrate the more advanced features of the package. Alternatively, you can head to the [documentation](https://reactivebayes.github.io/RxInfer.jl/stable/) that provides more detailed information of how to use `RxInfer` to specify more complex probabilistic models. - -Additionally, checkout our [video from JuliaCon 2023](https://www.youtube.com/watch?v=qXrvDVm_fnE) for a high-level overview of the package - -
- # Roadmap Our high-level project roadmap outlines the key milestones and focus areas for the upcoming years: -| Q1/Q2 2024 | Q3/Q4 2024 | 2025 | 2026 | -|---------------------|---------------------------|--------------------|-------------------------------------------| -| 🧩 **Nested models with [GraphPPL.jl](https://github.com/reactivebayes/GraphPPL.jl)** ✅ | 🛡️ **Robustness (NaN, Inf free)** | 🌐 **Stochastic Processes** | 🔄 **Automated inference with non-exponential family** -| 🔄 **Automated inference with [ExponentialFamily.jl](https://github.com/reactivebayes/ExponentialFamily.jl)** | 🧠 **Memory-efficiency** | 🚀 **Resource-adaptive inference** | 📊 **Inference over graph structure** +| Q1/Q2 2024 | Q3/Q4 2024 | 2025 | +|---------------------|---------------------------|--------------------| +| 🧩 **Nested models with [GraphPPL.jl](https://github.com/reactivebayes/GraphPPL.jl)** ✅ | 🌐 **Graph structure visualization** | 🔀 **Stochastic Processes** | +| 🔄 **Development of [ExponentialFamilyProjection.jl]()** | 🧠 **Automated inference with [ExponentialFamilyProjection.jl](https://github.com/reactivebayes/ExponentialFamilyProjection.jl)** | 🚀 **Robustness & Memory-efficiency** | -For a more granular view of our progress and ongoing tasks, check out our [project board](https://github.com/orgs/reactivebayes/projects/2/views/4) or join our -4-weekly [public meetings](https://dynalist.io/d/F4aA-Z2c8X-M1iWTn9hY_ndN). +For a more granular view of our progress and ongoing tasks, check out our [project board](https://github.com/orgs/reactivebayes/projects/2/views/4) or join our 4-weekly [public meetings](https://dynalist.io/d/F4aA-Z2c8X-M1iWTn9hY_ndN). # Contributing We welcome contributions from the community. If you are interested in contributing to the development of `RxInfer.jl`, please check out our [contributing guide](https://reactivebayes.github.io/RxInfer.jl/stable/contributing/guide), the [contributing guidelines](https://reactivebayes.github.io/RxInfer.jl/stable/contributing/guidelines), or look at the [issues linked with the `good first issue` label](https://github.com/ReactiveBayes/RxInfer.jl/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) to get started. -# Ecosystem +# Where to go next? -The `RxInfer` framework consists of three *core* packages developed by reactivebayes: +There are a set of [examples](https://reactivebayes.github.io/RxInfer.jl/stable/examples/overview/) available in `RxInfer` repository that demonstrate the more advanced features of the package. Alternatively, you can head to the [documentation](https://reactivebayes.github.io/RxInfer.jl/stable/) that provides more detailed information of how to use `RxInfer` to specify more complex probabilistic models. + +## Ecosystem + +The `RxInfer` framework consists of three *core* packages developed by [ReactiveBayes](https://github.com/reactivebayes/): - [`ReactiveMP.jl`](https://github.com/reactivebayes/ReactiveMP.jl) - the underlying message passing-based inference engine - [`GraphPPL.jl`](https://github.com/reactivebayes/GraphPPL.jl) - model and constraints specification package - [`Rocket.jl`](https://github.com/reactivebayes/Rocket.jl) - reactive extensions package for Julia +## JuliaCon 2023 presentation + +Additionally, checkout our [video from JuliaCon 2023](https://www.youtube.com/watch?v=qXrvDVm_fnE) for a high-level overview of the package + + + # License [MIT License](LICENSE) Copyright (c) 2021-2024 BIASlab, 2024-present ReactiveBayes