-
Notifications
You must be signed in to change notification settings - Fork 4.7k
/
Copy pathtest_features.py
469 lines (407 loc) · 16.7 KB
/
test_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import itertools
from typing import Optional, Text, List, Dict, Tuple, Any
import numpy as np
import pytest
import scipy.sparse
from rasa.shared.nlu.training_data.features import Features
from rasa.shared.nlu.constants import (
FEATURE_TYPE_SENTENCE,
FEATURE_TYPE_SEQUENCE,
TEXT,
INTENT,
)
@pytest.mark.parametrize(
"type,is_sparse,",
itertools.product([FEATURE_TYPE_SENTENCE, FEATURE_TYPE_SEQUENCE], [True, False]),
)
def test_print(type: Text, is_sparse: bool):
first_dim = 1 if type == FEATURE_TYPE_SEQUENCE else 3
matrix = np.full(shape=(first_dim, 2), fill_value=1)
if is_sparse:
matrix = scipy.sparse.coo_matrix(matrix)
feat = Features(
features=matrix,
attribute="fixed-attribute",
feature_type=type,
origin="origin--doesn't-matter-here",
)
assert repr(feat)
assert str(feat)
def test_combine_with_existing_dense_features():
existing_features = Features(
np.array([[1, 0, 2, 3], [2, 0, 0, 1]]), FEATURE_TYPE_SEQUENCE, TEXT, "test"
)
fingerprint = existing_features.fingerprint()
new_features = Features(
np.array([[1, 0], [0, 1]]), FEATURE_TYPE_SEQUENCE, TEXT, "origin"
)
expected_features = np.array([[1, 0, 2, 3, 1, 0], [2, 0, 0, 1, 0, 1]])
existing_features.combine_with_features(new_features)
assert np.all(expected_features == existing_features.features)
# check that combining features changes fingerprint
assert fingerprint != existing_features.fingerprint()
def test_combine_with_existing_dense_features_shape_mismatch():
existing_features = Features(
np.array([[1, 0, 2, 3], [2, 0, 0, 1]]), FEATURE_TYPE_SEQUENCE, TEXT, "test"
)
new_features = Features(np.array([[0, 1]]), FEATURE_TYPE_SEQUENCE, TEXT, "origin")
with pytest.raises(ValueError):
existing_features.combine_with_features(new_features)
def test_combine_with_existing_sparse_features():
existing_features = Features(
scipy.sparse.csr_matrix([[1, 0, 2, 3], [2, 0, 0, 1]]),
FEATURE_TYPE_SEQUENCE,
TEXT,
"test",
)
fingerprint = existing_features.fingerprint()
new_features = Features(
scipy.sparse.csr_matrix([[1, 0], [0, 1]]), FEATURE_TYPE_SEQUENCE, TEXT, "origin"
)
expected_features = [[1, 0, 2, 3, 1, 0], [2, 0, 0, 1, 0, 1]]
existing_features.combine_with_features(new_features)
actual_features = existing_features.features.toarray()
assert np.all(expected_features == actual_features)
# check that combining features changes fingerprint
assert fingerprint != existing_features.fingerprint()
def test_combine_with_existing_sparse_features_shape_mismatch():
existing_features = Features(
scipy.sparse.csr_matrix([[1, 0, 2, 3], [2, 0, 0, 1]]),
FEATURE_TYPE_SEQUENCE,
TEXT,
"test",
)
new_features = Features(
scipy.sparse.csr_matrix([[0, 1]]), FEATURE_TYPE_SEQUENCE, TEXT, "origin"
)
with pytest.raises(ValueError):
existing_features.combine_with_features(new_features)
def test_for_features_fingerprinting_collisions():
"""Tests that features fingerprints are unique."""
m1 = np.asarray([[0.5, 3.1, 3.0], [1.1, 1.2, 1.3], [4.7, 0.3, 2.7]])
m2 = np.asarray([[0, 0, 0], [1, 2, 3], [0, 0, 1]])
dense_features = [
Features(m1, FEATURE_TYPE_SENTENCE, TEXT, "CountVectorsFeaturizer"),
Features(m2, FEATURE_TYPE_SENTENCE, TEXT, "CountVectorsFeaturizer"),
Features(m1, FEATURE_TYPE_SEQUENCE, TEXT, "CountVectorsFeaturizer"),
Features(m1, FEATURE_TYPE_SEQUENCE, TEXT, "RegexFeaturizer"),
Features(m1, FEATURE_TYPE_SENTENCE, INTENT, "CountVectorsFeaturizer"),
]
dense_fingerprints = {f.fingerprint() for f in dense_features}
assert len(dense_fingerprints) == len(dense_features)
sparse_features = [
Features(
scipy.sparse.coo_matrix(m1),
FEATURE_TYPE_SENTENCE,
TEXT,
"CountVectorsFeaturizer",
),
Features(
scipy.sparse.coo_matrix(m2),
FEATURE_TYPE_SENTENCE,
TEXT,
"CountVectorsFeaturizer",
),
Features(
scipy.sparse.coo_matrix(m1),
FEATURE_TYPE_SEQUENCE,
TEXT,
"CountVectorsFeaturizer",
),
Features(
scipy.sparse.coo_matrix(m1), FEATURE_TYPE_SEQUENCE, TEXT, "RegexFeaturizer"
),
Features(
scipy.sparse.coo_matrix(m1),
FEATURE_TYPE_SENTENCE,
INTENT,
"CountVectorsFeaturizer",
),
]
sparse_fingerprints = {f.fingerprint() for f in sparse_features}
assert len(sparse_fingerprints) == len(sparse_features)
def test_feature_fingerprints_take_into_account_full_array():
"""Tests that fingerprint isn't using summary/abbreviated array info."""
big_array = np.random.random((128, 128))
f1 = Features(big_array, FEATURE_TYPE_SENTENCE, TEXT, "RegexFeaturizer")
big_array_with_zero = np.copy(big_array)
big_array_with_zero[64, 64] = 0.0
f2 = Features(big_array_with_zero, FEATURE_TYPE_SENTENCE, TEXT, "RegexFeaturizer")
assert f1.fingerprint() != f2.fingerprint()
f1_sparse = Features(
scipy.sparse.coo_matrix(big_array),
FEATURE_TYPE_SENTENCE,
TEXT,
"RegexFeaturizer",
)
f2_sparse = Features(
scipy.sparse.coo_matrix(big_array_with_zero),
FEATURE_TYPE_SENTENCE,
TEXT,
"RegexFeaturizer",
)
assert f1_sparse.fingerprint() != f2_sparse.fingerprint()
def _generate_feature_list_and_modifications(
is_sparse: bool, type: Text, number: int
) -> Tuple[List[Features], List[Dict[Text, Any]]]:
"""Creates a list of features with the required properties and some modifications.
The modifications are given by a list of kwargs dictionaries that can be used to
instantiate `Features` that differ from the aforementioned list of features in
exactly one property (i.e. type, sequence length (if the given `type` is
sequence type only), attribute, origin)
Args:
is_sparse: whether all features should be sparse
type: the type to be used for all features
number: the number of features to generate
Returns:
a tuple containing a list of features with the requested attributes and
a list of kwargs dictionaries that can be used to instantiate `Features` that
differ from the aforementioned list of features in exactly one property
"""
seq_len = 3
first_dim = 1 if type == FEATURE_TYPE_SENTENCE else 3
# create list of features whose properties match - except the shapes and
# feature values which are chosen in a specific way
features_list = []
for idx in range(number):
matrix = np.full(shape=(first_dim, idx + 1), fill_value=idx + 1)
if is_sparse:
matrix = scipy.sparse.coo_matrix(matrix)
config = dict(
features=matrix,
attribute="fixed-attribute",
feature_type=type,
origin=f"origin-{idx}",
)
feat = Features(**config)
features_list.append(feat)
# prepare some Features that differ from the features above in certain ways
modifications = []
# - if we modify one attribute
modifications.append({**config, **{"attribute": "OTHER"}})
# - if we modify one attribute
other_type = (
FEATURE_TYPE_SENTENCE
if type == FEATURE_TYPE_SEQUENCE
else FEATURE_TYPE_SEQUENCE
)
other_seq_len = 1 if other_type == FEATURE_TYPE_SENTENCE else seq_len
other_matrix = np.full(shape=(other_seq_len, number - 1), fill_value=number)
if is_sparse:
other_matrix = scipy.sparse.coo_matrix(other_matrix)
modifications.append(
{**config, **{"feature_type": other_type, "features": other_matrix}}
)
# - if we modify one origin
modifications.append({**config, **{"origin": "Other"}})
# - if we modify one sequence length
if type == FEATURE_TYPE_SEQUENCE:
matrix = np.full(shape=(seq_len + 1, idx + 1), fill_value=idx)
if is_sparse:
matrix = scipy.sparse.coo_matrix(matrix)
modifications.append({**config, **{"features": matrix}})
return features_list, modifications
@pytest.mark.parametrize(
"is_sparse,type,number,use_expected_origin",
itertools.product(
[True, False],
[FEATURE_TYPE_SENTENCE, FEATURE_TYPE_SEQUENCE],
[1, 2, 5],
[True, False],
),
)
def test_combine(is_sparse: bool, type: Text, number: int, use_expected_origin: bool):
features_list, modifications = _generate_feature_list_and_modifications(
is_sparse=is_sparse, type=type, number=number
)
modified_features = [Features(**config) for config in modifications]
first_dim = features_list[0].features.shape[0]
origins = [f"origin-{idx}" for idx in range(len(features_list))]
if number == 1:
# in this case the origin will be same str as before, not a list
origins = origins[0]
expected_origin = origins if use_expected_origin else None
# works as expected
combination = Features.combine(features_list, expected_origins=expected_origin)
assert combination.features.shape[1] == int(number * (number + 1) / 2)
assert combination.features.shape[0] == first_dim
assert combination.origin == origins
assert combination.is_sparse() == is_sparse
matrix = combination.features
if is_sparse:
matrix = combination.features.todense()
for idx in range(number):
offset = int(idx * (idx + 1) / 2)
assert np.all(matrix[:, offset : (offset + idx + 1)] == idx + 1)
# fails as expected in these cases
if use_expected_origin and number > 1:
for modified_feature in modified_features:
features_list_copy = features_list.copy()
features_list_copy[-1] = modified_feature
with pytest.raises(ValueError):
Features.combine(features_list_copy, expected_origins=expected_origin)
@pytest.mark.parametrize(
"is_sparse,type,number",
itertools.product(
[True, False], [FEATURE_TYPE_SENTENCE, FEATURE_TYPE_SEQUENCE], [1, 2, 5]
),
)
def test_filter(is_sparse: bool, type: Text, number: int):
features_list, modifications = _generate_feature_list_and_modifications(
is_sparse=is_sparse, type=type, number=number
)
# fix the filter configuration first (note: we ignore origin on purpose for now)
filter_config = dict(attributes=["fixed-attribute"], type=type, is_sparse=is_sparse)
# we get all features back if all features map...
result = Features.filter(features_list, **filter_config)
assert len(result) == number
# ... and less matches if we change the (relevant) properties of some features
modified_features = [
Features(**config)
for config in modifications
if set(config.keys()).intersection(filter_config.keys())
]
if number > 1:
for modified_feature in modified_features:
features_list_copy = features_list.copy()
features_list_copy[-1] = modified_feature
result = Features.filter(features_list_copy, **filter_config)
assert len(result) == number - 1
if number > 2:
for feat_a, feat_b in itertools.combinations(modified_features, 2):
features_list_copy = features_list.copy()
features_list_copy[-1] = feat_a
features_list_copy[-2] = feat_b
result = Features.filter(features_list_copy, **filter_config)
assert len(result) == number - 2
# don't forget to check the origin
filter_config = dict(
attributes=["fixed-attribute"],
type=type,
origin=["origin-0"],
is_sparse=is_sparse,
)
result = Features.filter(features_list, **filter_config)
assert len(result) == 1
@pytest.mark.parametrize(
"num_features_per_attribute,specified_attributes",
itertools.product(
[{"a": 3, "b": 1, "c": 0}],
[None, ["a", "b", "c", "doesnt-appear"], ["doesnt-appear"]],
),
)
def test_groupby(
num_features_per_attribute: Dict[Text, int],
specified_attributes: Optional[List[Text]],
):
features_list = []
for attribute, number in num_features_per_attribute.items():
for idx in range(number):
matrix = np.full(shape=(1, idx + 1), fill_value=idx + 1)
config = dict(
features=matrix,
attribute=attribute,
feature_type=FEATURE_TYPE_SEQUENCE, # doesn't matter
origin=f"origin-{idx}", # doens't matter
)
feat = Features(**config)
features_list.append(feat)
result = Features.groupby_attribute(features_list, attributes=specified_attributes)
if specified_attributes is None:
for attribute, number in num_features_per_attribute.items():
if number > 0:
assert attribute in result
assert len(result[attribute]) == number
else:
assert attribute not in result
else:
assert set(result.keys()) == set(specified_attributes)
for attribute in specified_attributes:
assert attribute in result
number = num_features_per_attribute.get(attribute, 0)
assert len(result[attribute]) == number
@pytest.mark.parametrize(
"shuffle_mode,num_features_per_combination",
itertools.product(
["reversed", "random"], [[1, 0, 0, 0], [1, 1, 1, 1], [2, 3, 4, 5], [0, 1, 2, 2]]
),
)
def test_reduce(
shuffle_mode: Text, num_features_per_combination: Tuple[int, int, int, int]
):
# all combinations - in the expected order
# (i.e. all sparse before all dense and sequence before sentence)
all_combinations = [
(FEATURE_TYPE_SEQUENCE, True),
(FEATURE_TYPE_SENTENCE, True),
(FEATURE_TYPE_SEQUENCE, False),
(FEATURE_TYPE_SENTENCE, False),
]
# multiply accordingly and mess up the order
chosen_combinations = [
spec
for spec, num in zip(all_combinations, num_features_per_combination)
for _ in range(num)
]
if shuffle_mode == "reversed":
messed_up_order = reversed(chosen_combinations)
else:
# Note: rng.permutation would mess up the types
rng = np.random.default_rng(23452345)
permutation = rng.permutation(len(chosen_combinations))
messed_up_order = [chosen_combinations[idx] for idx in permutation]
# create features accordingly
features_list = []
for idx, (type, is_sparse) in enumerate(messed_up_order):
first_dim = 1 if type == FEATURE_TYPE_SEQUENCE else 3
matrix = np.full(shape=(first_dim, 1), fill_value=1)
if is_sparse:
matrix = scipy.sparse.coo_matrix(matrix)
config = dict(
features=matrix,
attribute="fixed-attribute", # must be the same
feature_type=type,
origin="origin-does-matter-here", # must be the same
)
feat = Features(**config)
features_list.append(feat)
# reduce!
reduced_list = Features.reduce(features_list)
assert len(reduced_list) == sum(num > 0 for num in num_features_per_combination)
idx = 0
for num, (type, is_sparse) in zip(num_features_per_combination, all_combinations):
if num == 0:
# nothing to check here - because we already checked the length above
# and check the types and shape of all existing features in this loop
pass
else:
feature = reduced_list[idx]
assert feature.is_sparse() == is_sparse
assert feature.type == type
assert feature.features.shape[-1] == num
idx += 1
@pytest.mark.parametrize("differ", ["attribute", "origin"])
def test_reduce_raises_if_combining_different_origins_or_attributes(differ: Text):
# create features accordingly
arbitrary_fixed_type = FEATURE_TYPE_SENTENCE
features_list = []
for idx in range(2):
first_dim = 1
arbitrary_matrix_matching_type = np.full(shape=(first_dim, 1), fill_value=1)
config = dict(
features=arbitrary_matrix_matching_type,
attribute="fixed-attribute" if differ != "attribute" else f"attr-{idx}",
feature_type=arbitrary_fixed_type,
origin="fixed-origin" if differ != "origin" else f"origin-{idx}",
)
feat = Features(**config)
features_list.append(feat)
# reduce!
if differ == "attribute":
message = "Expected all Features to describe the same attribute"
expected_origin = ["origin"]
else:
message = "Expected 'origin-1' to be the origin of the 0-th"
expected_origin = ["origin-1"]
with pytest.raises(ValueError, match=message):
Features.reduce(features_list, expected_origins=expected_origin)